將一枚硬幣拋擲n次,求正面次數(shù)與反面次數(shù)之差ξ的概率分布列,并求出ξ的期望Eξ與方差Dξ.
解析:設(shè)正面的次數(shù)是η,則η服從二項(xiàng)分布B(n,0.5),概率分布為P(η=k)=0.5n,k=0,1,…,n,且Eη=0.5n,Dη=0.25n.而反面次數(shù)為n-η,ξ=η-(n-η)=2η-n. 于是ξ的概率分布為 P(ξ=2k-n)=P(η=k)=0.5n,k=0,1,…,n. (或P(ξ=k)=P(η=)=·0.5n,k=-n,-n+2,…,n-2,n) 故Eξ=E(2η-n)=2Eη-n=2×0.5n-n=0, Dξ=D(2η-n)=22Dη=4×0.5n=2n. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:北京高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿(mǎn)分10分)
在直角坐標(biāo)系xoy中,直線(xiàn)的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線(xiàn)交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.
23(本小題滿(mǎn)分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線(xiàn)AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
24.(本小題滿(mǎn)分10分)
將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.
(Ⅰ)若該硬幣均勻,試求與;
(Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(選修4-4:坐標(biāo)系與參數(shù)方程) (本小題滿(mǎn)分10分)
在直角坐標(biāo)系xoy中,直線(xiàn)的參數(shù)方程為(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線(xiàn)交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為,求|PA|+|PB|.
23(本小題滿(mǎn)分10分)
已知三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,,N為AB上一點(diǎn),AB=4AN, M、S分別為PB,BC的中點(diǎn).以A為原點(diǎn),射線(xiàn)AB,AC,AP分別為x,y,z軸正向建立如圖空間直角坐標(biāo)系.
(Ⅰ)證明:CM⊥SN;
(Ⅱ)求SN與平面CMN所成角的大小.
24.(本小題滿(mǎn)分10分)
將一枚硬幣連續(xù)拋擲次,每次拋擲互不影響. 記正面向上的次數(shù)為奇數(shù)的概率為,正面向上的次數(shù)為偶數(shù)的概率為.
(Ⅰ)若該硬幣均勻,試求與;
(Ⅱ)若該硬幣有暇疵,且每次正面向上的概率為,試比較與的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com