【題目】給出下列說(shuō)法:

1)命題的否定形式是,;

2)已知,則;

3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為,則回歸直線方程為;

4)對(duì)分類變量的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷有關(guān)系的把握越大;

5)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變.

其中正確說(shuō)法的個(gè)數(shù)為(

A.2B.3C.4D.5

【答案】B

【解析】

根據(jù)含有一個(gè)量詞的命題的否定,直接判斷(1)錯(cuò);根據(jù)正態(tài)分布的特征,直接判斷(2)對(duì);根據(jù)線性回歸方程的特點(diǎn),判斷(3)正確;根據(jù)獨(dú)立性檢驗(yàn)的基本思想,可判斷(4)錯(cuò);根據(jù)方差的特征,可判斷(5)正確.

1)命題,的否定形式是,,故(1)錯(cuò);

2)因?yàn)?/span>,即服從正態(tài)分布,均值為,所以;故(2)正確;

3)因?yàn)榛貧w直線必過(guò)樣本中心,又已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為,所以,即所求回歸直線方程為:;故(3)正確;

4)對(duì)分類變量的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷有關(guān)系的把握越大;故(4)錯(cuò);

5)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不變.故(5)錯(cuò).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x-1,(a∈R),若對(duì)任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的左右頂點(diǎn)分別為,,為坐標(biāo)原點(diǎn),且.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)為直線在第一象限內(nèi)的一點(diǎn),連接交橢圓于點(diǎn),連接并延長(zhǎng)交橢圓于點(diǎn).若直線的斜率為1,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點(diǎn);

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查生活規(guī)律與患胃病是否與有關(guān),某同學(xué)在當(dāng)?shù)仉S機(jī)調(diào)查了20030歲以上的人,并根據(jù)調(diào)查結(jié)果制成了不完整的列聯(lián)表如下:

不患胃病

患胃病

總計(jì)

生活有規(guī)律

60

40

生活無(wú)規(guī)律

60

100

總計(jì)

100

(1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);

(2)用獨(dú)性檢驗(yàn)的基本原理,說(shuō)明生活無(wú)規(guī)律與患胃病有關(guān)時(shí),出錯(cuò)的概率不會(huì)超過(guò)多少?

參考公式和數(shù)表如下:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

/p>

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《易經(jīng)》是中國(guó)傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽(yáng)線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽(yáng)線和三根陰線的概率__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又的導(dǎo)函數(shù).若正常數(shù) 滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面與平面平行的充分條件可以是(

A.內(nèi)有無(wú)窮多條直線都與平行

B.直線,且直線a不在內(nèi),也不在內(nèi)

C.直線,直線,且,

D.內(nèi)的任何一條直線都與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機(jī)構(gòu)從某中學(xué)中隨機(jī)選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

體重

60

46

43

48

48

50

61

52

該調(diào)查機(jī)構(gòu)繪制出該組數(shù)據(jù)的散點(diǎn)圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強(qiáng)的線性相關(guān)關(guān)系.

1)調(diào)查員甲計(jì)算得出該組數(shù)據(jù)的線性回歸方程為,請(qǐng)你據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

2)調(diào)查員乙仔細(xì)觀察散點(diǎn)圖發(fā)現(xiàn),這8名同學(xué)中,編號(hào)為14的兩名同學(xué)對(duì)應(yīng)的點(diǎn)與其他同學(xué)對(duì)應(yīng)的點(diǎn)偏差太大,于是提出這樣的數(shù)據(jù)應(yīng)剔除,請(qǐng)你按照這名調(diào)查人員的想法重新計(jì)算線性回歸話中,并據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

3)請(qǐng)你分析一下,甲和乙誰(shuí)的模型得到的預(yù)測(cè)值更可靠?說(shuō)明理由.

附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計(jì)分別為:.

查看答案和解析>>

同步練習(xí)冊(cè)答案