【題目】某研究機構對高三學生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):
6 | 8 | 10 | 12 | |
2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
相關公式:,.
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.在購進機器時,可以一次性額外購買幾次維修服務,每次維修服務費用200元,另外實際維修一次還需向維修人員支付小費,小費每次50元.在機器使用期間,如果維修次數(shù)超過購機時購買的維修服務次數(shù),則每維修一次需支付維修服務費用500元,無需支付小費.現(xiàn)需決策在購買機器時應同時一次性購買幾次維修服務,為此搜集并整理了100臺這種機器在三年使用期內的維修次數(shù),得下面統(tǒng)計表:
維修次數(shù) | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記x表示1臺機器在三年使用期內的維修次數(shù),y表示1臺機器在維修上所需的費用(單位:元),表示購機的同時購買的維修服務次數(shù).
(1)若=10,求y與x的函數(shù)解析式;
(2)若要求“維修次數(shù)不大于”的頻率不小于0.8,求n的最小值;
(3)假設這100臺機器在購機的同時每臺都購買10次維修服務,或每臺都購買11次維修服務,分別計算這100臺機器在維修上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買10次還是11次維修服務?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時期的數(shù)學家張丘建是世界數(shù)學史上解決不定方程的第一人,他在《張丘建算經(jīng)》中給出一個解不定方程的百雞問題,問題如下:雞翁一,值錢五,雞母一,值錢三,雞雛三,值錢一.百錢買百雞,問雞翁母雛各幾何?用代數(shù)方法表述為:設雞翁、雞母、雞雛的數(shù)量分別為,,,則雞翁、雞母、雞雛的數(shù)量即為方程組的解.其解題過程可用框圖表示如下圖所示,則框圖中正整數(shù)的值為 ______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系中,直線的極坐標方程為.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設點(0,2),和交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象在軸右側的第一個最高點和第一個最低點的坐標分別為和.若將函數(shù)的圖象向左平移個單位長度后得到的圖象關于原點對稱.
(1)求函數(shù)的解析式;
(2)若函數(shù)的周期為,當時,方程恰有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面直角坐標系內兩定點,及動點,的兩邊所在直線的斜率之積為.
(1)求動點的軌跡的方程;
(2)設是軸上的一點,若(1)中軌跡上存在兩點使得,求以為直徑的圓面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為等差數(shù)列,且(Ⅰ)求數(shù)列的通項公式;(Ⅱ)記的前項和為,若成等比數(shù)列,求正整數(shù)的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】復利是一種計算利息的方法.即把前一期的利息和本金加在一起算作本金,再計算下一期的利息.某同學有壓歲錢1000元,存入銀行,年利率為2.25%;若放入微信零錢通或
者支付寶的余額寶,年利率可達4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息( )元.(參考數(shù)據(jù):)
A. 176 B. 100 C. 77 D. 88
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com