【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個人員密集流動地段增設(shè)一個起點(diǎn)站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時間對應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對值都不超過,則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這組數(shù)據(jù)中隨機(jī)選取2組數(shù)據(jù),求選取的這組數(shù)據(jù)的間隔時間不相鄰的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
【答案】(1);(2),是;(3)18.
【解析】
(1)由題意結(jié)合古典概型計(jì)算公式確定概率值即可;
(2)首先求得回歸方程,然后確定其是否為“恰當(dāng)回歸方程”即可.
(1)設(shè)“從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,剩下的組數(shù)據(jù)不相鄰”為事件.
記這六組數(shù)據(jù)分別為,,
剩下的兩組數(shù)據(jù)的基本事件有,共種,
其中相鄰的有共種,所以.
(2)后面組數(shù)據(jù)是:
間隔時間(分鐘) | ||||
等候人數(shù)(人) |
因?yàn)?/span>,,
所以,
,
所以,,
所以,
當(dāng)時,,;
當(dāng)時,,;
所以求出的線性回歸方程是“恰當(dāng)回歸方程”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)書九章》是中國南宋時期杰出數(shù)學(xué)家秦九韶的著作,其中在卷五“三斜求積”中提出了已知三角形三邊、、,求面積的公式,這與古希臘的海倫公式完全等價,其求法是“以小斜冥并大斜冥減中斜冥,余半之,自乘于上,以小斜冥乘大斜冥減上,余四約之,為實(shí).一為從隅,開平方得積”若把以上這段文字寫出公式,即若,則.
(1)已知的三邊,,,且,求證:的面積.
(2)若,,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,方程(為,為不相等的兩個正數(shù))所代表的曲線是( )
A. 三角形 B. 正方形 C. 非正方形的長方形 D. 非正方形的菱形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時,
(1)求橢圓的方程.
(2)當(dāng)時,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動,是線段與軸的交點(diǎn),過、分別作直線、,使,,.
(1)求動點(diǎn)的軌跡的方程;
(2)已知⊙:,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,若函數(shù)恰有一個零點(diǎn),求的取值范圍;
(2)當(dāng)時, 恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com