關(guān)于x的不等式ax2+2ax-4<0對一切x∈R恒成立,則a的取值范圍是( 。
A、(-4,0)
B、(-4,0]
C、[-4,0)
D、[-4,0]
考點:函數(shù)恒成立問題
專題:綜合題,不等式的解法及應用
分析:當a=0時,不等式對一切x∈R恒成立,當aa≠0時,由二次項系數(shù)小于0且對應的判別式小于0聯(lián)立不等式組求解a的范圍,最后把a取并集得答案.
解答: 解:當a=0時,不等式化為-4<0,滿足題意;
當a≠0時,則:
a<0
△=4a2+16a<0
,解得:-4<a<0.
綜上,滿足ax2+2ax-4<0對一切x∈R恒成立的實數(shù)a的取值范圍是(-4,0].
故選:B.
點評:本題考查了函數(shù)恒成立問題,考查了二次不等式的解法,訓練了“三個二次”在解題中的應用,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=4sin(4x-
2
)是( 。
A、周期為π的奇函數(shù)
B、周期為π的偶函數(shù)
C、周期為
π
2
的奇函數(shù)
D、周期為
π
2
的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,A>B是sinB<sinA成立的( 。l件.
A、必要不充分B、充分不必要
C、充要D、不充分不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f′(x)g(x)<f(x)g′(x),f(x)=axg(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
10
3
,則
f(2)
g(2)
=( 。
A、a2
B、
1
a2
C、9
D、
1
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P、M、N是單位圓上互不相同的三個點,且滿足|
PM
|=|
PN
|,則
PM
PN
的最小值是 ( 。
A、-
1
4
B、-
1
2
C、-
3
4
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)是R上以4為周期的可導偶函數(shù),則曲線y=f(x)在x=4處的切線的斜率為(  )
A、-
1
4
B、0
C、
1
4
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
2
sin(2x-
π
3
)的圖象可以看作是把函數(shù)y=
1
2
sin2x的圖象( 。
A、向左平移
π
3
得到的
B、向右平移
π
6
得到的
C、向右平移
π
12
得到的
D、向左平移
π
6
得到的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線交⊙O于D,DE⊥AC,交AC的延長線于E,OE交AD于F.
(1)求證:DE是⊙O的切線;
(2)若AC=4,AB=10,求
AF
DE
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1-x)ex-1.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)若x≥0時,g(x)=ex+λ1n(1-x)-1≤0,求λ的取值范圍.

查看答案和解析>>

同步練習冊答案