分析 (Ⅰ)連接AE和OE,由三角形和圓的知識易得∠OED=90°,可得DE是⊙O的切線;
(Ⅱ)設CE=1,AE=x,由射影定理可得關于x的方程x2=$\sqrt{12-{x}^{2}}$,解方程可得x值,可得所求角度.
解答 解:(Ⅰ)連接AE,由已知得AE⊥BC,AC⊥AB,
在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,
連接OE,則∠OBE=∠OEB,
又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,
∴∠OED=90°,∴DE是⊙O的切線;
(Ⅱ)設CE=1,AE=x,
由已知得AB=2$\sqrt{3}$,BE=$\sqrt{12-{x}^{2}}$,
由射影定理可得AE2=CE•BE,
∴x2=$\sqrt{12-{x}^{2}}$,即x4+x2-12=0,
解方程可得x=$\sqrt{3}$
∴∠ACB=60°
點評 本題考查圓的切線的判定,涉及射影定理和三角形的知識,屬基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 消耗1升汽油,乙車最多可行駛5千米 | |
B. | 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多 | |
C. | 甲車以80千米/小時的速度行駛1小時,消耗10升汽油 | |
D. | 某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比用乙車更省油 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 3 | C. | $\frac{10}{3}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com