【題目】橢圓的右焦點(diǎn)為,左頂點(diǎn)為,線段的中點(diǎn)為,圓過(guò)點(diǎn),且與交于, 是等腰直角三角形,則圓的標(biāo)準(zhǔn)方程是____________

【答案】

【解析】

設(shè)A(﹣a,0),求得AF的中點(diǎn)B的坐標(biāo),可得圓F的半徑和方程,設(shè)D(m,n),(m>0,n>0),E(m,﹣n),由△BDE為等腰直角三角形,可得m,n的關(guān)系,將D的坐標(biāo)代入圓的方程,解方程可得m=1,求出n,代入橢圓方程,解方程可得a=2,即可得到圓F的方程.

如圖設(shè)A(﹣a,0),可得a>1,c=1,b2=a2﹣1,

線段AF的中點(diǎn)為B(,0),

圓F的圓心為F(1,0),半徑r=|BF|,

設(shè)D(m,n),(m>0,n>0),E(m,﹣n),

由△BDE為等腰直角三角形,可得kBD=1,

1,即n=m

由D在圓F:(x﹣1)2+y2=(2上,

可得(m﹣1)2+(m2=(2

化簡(jiǎn)可得(m﹣1)(2m﹣1+a)=0,

解得m=1或m(舍去),

則n,

將D(1,)代入橢圓方程,可得

1,

化簡(jiǎn)可得a=2或(舍去),

則圓F的標(biāo)準(zhǔn)方程為(x﹣1)2+y2

故答案為:(x﹣1)2+y2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)當(dāng)時(shí),求函數(shù)圖像在點(diǎn)處的切線;

2)求函數(shù)的單調(diào)遞減區(qū)間;

3)若函數(shù)的在區(qū)間的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)的單調(diào)區(qū)間及極值;

2)當(dāng)時(shí),函數(shù)(其中)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來(lái)每周開(kāi)車從家到公司的時(shí)間之和統(tǒng)計(jì)如圖所示.

1)求此人這三年以來(lái)每周開(kāi)車從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率;

2)求此人這三年以來(lái)每周開(kāi)車從家到公司的時(shí)間之和的平均數(shù)(每組取該組的中間值作代表);

3)以頻率估計(jì)概率,記此人在接下來(lái)的四周內(nèi)每周開(kāi)車從家到公司的時(shí)間之和在(時(shí))內(nèi)的周數(shù)為,求的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十九大報(bào)告明確指出要堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),讓貧困人口和貧困地區(qū)同全國(guó)一道進(jìn)入全面小康社會(huì),要?jiǎng)訂T全黨全國(guó)全社會(huì)力量,堅(jiān)持精準(zhǔn)扶貧、精準(zhǔn)脫貧,確保到2020年我國(guó)現(xiàn)行標(biāo)準(zhǔn)下農(nóng)村貧困人口實(shí)現(xiàn)脫貧.現(xiàn)有扶貧工作組到某山區(qū)貧困村實(shí)施脫貧工作.經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶100戶,他們均從事水果種植,2017年底該村平均每戶年純收入為1萬(wàn)元,扶貧工作組一方面請(qǐng)有關(guān)專家對(duì)水果進(jìn)行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其戶數(shù)必須小于種植的戶數(shù).2018年初開(kāi)始,若該村抽出戶(,)從事水果包裝、銷售.經(jīng)測(cè)算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為萬(wàn)元.(參考數(shù)據(jù):,,.

1)至2018年底,該村每戶年均純收入能否達(dá)到1.32萬(wàn)元?若能,請(qǐng)求出從事包裝、銷售的戶數(shù);若不能,請(qǐng)說(shuō)明理由;

2)至2020年底,為使從事水果種植農(nóng)戶能實(shí)現(xiàn)脫貧(即每戶(水果種植農(nóng)戶)年均純收入不低于1.6萬(wàn)元),至少要抽出多少戶從事包裝、銷售工作?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為4,分別為棱、的中點(diǎn),;

1)求直線與平面所成角的大;

2)求點(diǎn)到平面的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù). 設(shè)的導(dǎo)函數(shù).

(Ⅰ)若時(shí),函數(shù)處的切線經(jīng)過(guò)點(diǎn),求的值;

(Ⅱ)求函數(shù)在區(qū)間上的單調(diào)區(qū)間;

(Ⅲ)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且直線與橢圓有且只有一個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)直線軸交于點(diǎn),過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為常數(shù),當(dāng)時(shí),有三個(gè)極值點(diǎn),,(其中).

(1)求實(shí)數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案