【題目】已知命題函數(shù)在上單調(diào)遞增;命題函數(shù)至少有1個(gè)零點(diǎn).
(1)若為假,求實(shí)數(shù)的取值范圍;
(2)若為假,為真,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(1)因?yàn)?/span>為假,則命題為真.令,分離參數(shù)并構(gòu)造函數(shù),求得,由的符號(hào)判斷函數(shù)的單調(diào)性與極大值.結(jié)合函數(shù)圖像即可求得的取值范圍;
(2)先求得當(dāng)命題為真命題時(shí)的取值范圍.再由為假,為真可知一真一假.分類(lèi)討論真假、假真,即可求得的取值范圍.
(1)依題意若為假,則命題為真,
令,
解得,
令,則,
故當(dāng)時(shí),,
當(dāng),,
作出函數(shù)圖象如下所示,
所以當(dāng)時(shí),取得極大值,為
由圖像可知若至少有一個(gè)零點(diǎn),則,
即;
(2)當(dāng)命題為真時(shí),函數(shù)在上單調(diào)遞增,
顯然時(shí),不符合題意,
由二次函數(shù)性質(zhì)知解得;
若為假,為真,則一真一假:
若真假,則實(shí)數(shù)滿足則;
若假真,則實(shí)數(shù)滿足則;
綜上所述,實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線與曲線相交于不同的兩點(diǎn),.
(1)若,求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若為與的等比中項(xiàng),其中,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面平面,,四邊形為平行四邊形,,為線段的中點(diǎn),點(diǎn)滿足.
(Ⅰ)求證:直線平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓()的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)原點(diǎn)的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對(duì)任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)滿足,記點(diǎn)的軌跡為.斜率為的直線過(guò)點(diǎn),且與軌跡相交于兩點(diǎn).
(1)求軌跡的方程;
(2)求斜率的取值范圍;
(3)在軸上是否存在定點(diǎn),使得無(wú)論直線繞點(diǎn)怎樣轉(zhuǎn)動(dòng),總有成立?如果存在,求出定點(diǎn);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足,且.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點(diǎn),E是BD的中點(diǎn).
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,設(shè),且,記;
(1)設(shè),其中,試求的單調(diào)區(qū)間;
(2)試判斷弦的斜率與的大小關(guān)系,并證明;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com