精英家教網 > 高中數學 > 題目詳情
比較代數式(3x-2)2-3與8x2-6x-10的大小.
考點:不等式比較大小
專題:不等式的解法及應用
分析:利用“作差法”即可比較出兩個數的大小.
解答: 解:作差(3x-2)2-3-(8x2-6x-10)=9x2-12x+4-3-8x2+6x+10=x2-4x+11=(x-2)2+7>0.
∴(3x-2)2-3>8x2-6x-10.
點評:本題考查了“作差法”、配方法比較兩個數的大小,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=2,對?n∈N*總有an+1=3an+2成立,
(1)計算a2,a3,a4的值;
(2)根據(1)的結果猜想數列的通項an,并用數學歸納法證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tan(π+x﹚=-3,x∈[
π
2
,π],求:
(1)cos(π-x﹚;
(2)sin2x-sinxcosx.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,點P到兩點F1(0,-
3
)
,F(xiàn)2(0,
3
)
的距離之和等于4,動點P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設直線y=kx+1與曲線C交于A、B兩點,當OA⊥OB(O為坐標原點),求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

現(xiàn)有芳香度為0,1,2,3,4,5的六種添加劑,要隨機選取兩種不同添加劑進行搭配試驗;求所選用的兩種不同的添加劑的芳香度之和小于3的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,AB是圓O的直徑,AB=5,PA垂直于圓O所在的平面,C是圓周上一點,AC=PA=4,求:
(1)直線PA與BC所成的角;
(2)二面角P-BC-A的大。
(3)三棱錐A-PBC的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,過點F作互相垂直的兩直線AB、CD與拋物線分別相交于A、B以及C、D,若
1
|AF|
+
1
|BF|
=1.
(1)求此拋物線的方程.
(2)試求四邊形ACBD的面積的最小值.
(3)設N(n,0)(n<0),過點N的直線與拋物線相交于P、Q兩點,且
NP
=
1
3
NQ
,試將|PQ|表示為n的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為1,D為CC1中點.
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求點C到平面A1BD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(-1,3),向量
b
=(2,4),則
a
+
b
=
 

查看答案和解析>>

同步練習冊答案