【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學生參加社區(qū)服務人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).
【答案】
(1)解:由分組[10,15)內(nèi)的頻數(shù)是10,頻率是0.25,知 =0.25,所以
M=40.因為頻數(shù)之和為40,所以10+24+m+2=40,解得m=4,p= =0.10.因為a是對應分組[15,20)的頻率與組距的商,所以a= =0.12
(2)解:因為該校高三學生有240人,在[10,15)內(nèi)的頻率是0.25,
所以估計該校高三學生參加社區(qū)服務的次數(shù)在此區(qū)間內(nèi)的人數(shù)為60
(3)解:估計這次學生參加社區(qū)服務人數(shù)的眾數(shù)是 =17.5.因為n= =
0.6,所以樣本中位數(shù)是15+ ≈17.1,估計這次學生參加社區(qū)服務人
數(shù)的中位數(shù)是17.1.樣本平均人數(shù)是12.5×0.25+17.5×0.6+22.5×0.1+
27.5×0.05=17.25,估計這次學生參加社區(qū)服務人數(shù)的平均數(shù)是17.25
【解析】(1)由分組可得樣本容量M的值,進而得出m的值,由a是對應分組[10,20)的頻率與組距的商,計算可得答案。
(2)用高三學生總人數(shù)乘分組[10,15)的頻率可得。
(3)先估計這次學生參加社區(qū)服務人數(shù)的眾數(shù),再求得中位數(shù),然后可得樣本平均人數(shù)。
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|x2+2x﹣3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)設命題p:x∈A,命題q:x∈B,若p是q成立的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將某選手的9個得分去掉1個最高分,去掉1個最低分,7個剩余分數(shù)的平均分為91.現(xiàn)場作的9個分數(shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認,在圖中以x表示,則7個剩余分數(shù)的方差為( )
A.
B.
C.36
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ex﹣ax2 , g(x)是f(x)的導函數(shù). (I)求g(x)的極值;
(II)證明:對任意實數(shù)x∈R,都有f′(x)≥x﹣2ax+1恒成立:
(Ⅲ)若f(x)≥x+1在x≥0時恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點,設Q是CC1上的點,問:當點Q在什么位置時,平面D1BQ與平面PAO平行?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(I)求函數(shù) 的最小正周期及對稱軸方程;
(II)求函數(shù) 的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校在校學生2 000人,為了學生的“德、智、體”全面發(fā)展,學校舉行了跑步和登山比賽活動,每人都參加而且只參與其中一項比賽,各年級參與比賽的人數(shù)情況如下表:
高一年級 | 高二年級 | 高三年級 | |
跑步人數(shù) | a | b | c |
登山人數(shù) | x | y | z |
其中a∶b∶c=2∶5∶3,全校參與登山的人數(shù)占總人數(shù)的 .為了了解學生對本次活動的滿意程度,從中抽取一個200人的樣本進行調(diào)查,則高三年級參與跑步的學生中應抽取( )
A.15人
B.30人
C.40人
D.45人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com