18.在80件產(chǎn)品中,有50件一等品,20件二等品,10件三等品,從中任取3件.求3件都是一等品的概率.

分析 先求出從中任取3件基本事件總數(shù),再求出3件都是一等品包含的基本事件個(gè)數(shù),由此能求出3件都是一等品的概率.

解答 解:從中任取3件基本事件總數(shù)n=${C}_{80}^{3}$,
3件都是一等品包含的基本事件個(gè)數(shù)m=${C}_{50}^{3}$,
∴3件都是一等品的概率P=$\frac{m}{n}=\frac{{C}_{50}^{3}}{{C}_{80}^{3}}$=$\frac{245}{1027}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖(1),拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點(diǎn).

(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)C,與直線OM 交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍;
(3)如圖(2)將拋物線平移,當(dāng)頂點(diǎn)至原點(diǎn)時(shí),過Q(0,3)作不平行于x軸的直線拋物線于E、F兩點(diǎn).問在y軸的負(fù)半軸上是否存在點(diǎn)P,使△PEF的內(nèi)心在y 軸上?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合p={x|y=$\sqrt{x}$+1},Q={y|y=x3},則P=[0,+∞),P∩Q=[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|x2-2x-8≤0},B={x|x2-(2m-3)x+m(m-3)≤0,m∈R}.
(1)若A∩B=[2,4],求實(shí)數(shù)m的值;
(2)設(shè)全集為R,若A⊆(∁RB),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-ax+lnx,a∈R.
(1)若f(x)是單調(diào)遞增函數(shù),求a的最大值;
(2)若f(x)>0在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.用定義證明函數(shù)y=x+$\frac{1}{x}$在(1,+∞)上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=3x-1,g(x)=x2-2x-1,若存在實(shí)數(shù)a、b使得f(a)=g(b),則b是取值范圍是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.到點(diǎn)A(-1,0)和直線x=3距離相等的點(diǎn)的軌跡方程是y2=-8x+8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的定義域:
(1)y=$\frac{1}{lo{g}_{3}(3x-2)}$;
(2)y=loga(2-x)(a>0,且a≠1):
(3)y=loga(1-x)2(a>0,且a≠1).

查看答案和解析>>

同步練習(xí)冊(cè)答案