若直線y=x+b與曲線x2+y2=4(y≥0)有公共點,則b的取值范圍是
 
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:由題意可得直線y=x+b與半圓x2+y2=4(y≥0)有公共點,當(dāng)直線過點A(2,0)時,求得 b的值;當(dāng)直線和半圓相切于點B時,根據(jù)圓心到直線的距離等于半徑求得b的值,數(shù)形結(jié)合從而得到b的取值范圍.
解答: 解:由題意可得直線y=x+b與半圓x2+y2=4(y≥0)有公共點,
如圖所示:當(dāng)直線過點A(2,0)時,可得0=2+b,求得 b=-2.
當(dāng)直線和半圓相切于點B時,由圓心到直線的距離等于半徑可得
|0-0+b|
2
=2,求得b=2
2
,或b=-2
2
(舍去),
故b的取值范圍是[-2,2
2
],
故答案為:[-2,2
2
].
點評:本題主要考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|-2≤x≤5},B={x|k+1≤x≤2k-1},
(1)若B⊆A,求k的取值范圍;
(2)若B?A,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=6cosθ+8sinθ.現(xiàn)以極點O為原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)若圓C上的動點P的直角坐標(biāo)為(x,y),求x+y的最大值,并寫出x+y取得最大值時點P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)x,y滿足x2-y2=2xy,求
x-y
x+y
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,PD=AD,
(1)求證:AC⊥面PDB;
(2)求二面角P-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈N|
3
x
≥1},B={x∈N|log2(x+1)≤1},S⊆A,S∩B≠∅,則集合S的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個空間幾何體的三視圖如圖所示,其中主視圖和側(cè)視圖都是半徑為1的圓,且這個幾何體是實心球體的一部分,則這個幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
x=2-t
y=2t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C2的極坐標(biāo)方程為ρ=4cosθ,則C1與C2的兩個交點之間的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=1+
1
2
+
1
3
+…+
1
n
(n∈N*),猜想關(guān)于n的整式f(n)=
 
時,使得等式a1+a2+a3+…+an-1=f(n)•(an-1)對于大于1的一切自然數(shù)n都成立.

查看答案和解析>>

同步練習(xí)冊答案