【題目】已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,求圓心為C的圓的標準方程.

【答案】解:因為A(1,1)和B(2,-2),所以線段AB的中點D的坐標為 ,
直線AB的斜率kAB =-3,因此線段AB的垂直平分線l′的方程為y+ ,即x-3y-3=0.由 所以圓心C的坐標是(-3,-2),半徑r=|AC|=
所以圓心為C的圓的標準方程是(x+3)2+(y+2)2=25.
【解析】本題給出圓C滿足的條件,求圓的方程.著重考查了兩點間的距離公式和圓的標準方程等知識.圓的標準方程:
(x-a)2+(y-b)2=r2(r>0), 其中圓心C(a,b),半徑為r.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在這個正方體中,

平行;
是異面直線;
是異面直線;
是異面直線;
以上四個命題中,正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了穩(wěn)定市場,確保農(nóng)民增收,某農(nóng)產(chǎn)品7個月份的每月市場收購價格與其前三個月的市場收購價格有關(guān),并使其與前三個月的市場收購價格之差的平方和最小,下表列出的是該產(chǎn)品今年前6個月的市場收購價格,則前7個月該產(chǎn)品的市場收購價格的方差為( )

月份

1

2

3

4

5

6

價格(元/擔)

68

78

67

71

72

70


A.
B.
C.11
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一次考試結(jié)果的頻數(shù)分布直方圖,根據(jù)該圖可估計,這次考試的平均分數(shù)為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年12月,京津冀等地數(shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來最嚴重的污染過程.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:

時間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量x(萬輛)

1

2

3

4

5

6

7

PM2.5的濃度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散點圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是 = x+ ,其中 = , =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點,設Q是CC1上的點,問:當點Q在什么位置時,平面D1BQ與平面PAO平行?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若不等式2xlogax<0在x∈ 上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1所示,在直角梯形 中, , , , , , .將 沿 折起,使得點 在平面 的正投影 恰好落在 邊上,得到幾何體 ,如圖2所示.

(1)求證: ;
(2)求點 到平面 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)y=f(x)、對數(shù)函數(shù)y=g(x)和冪函數(shù)y=h(x)的圖象都經(jīng)過點P( ),如果f(x1)=g(x2)=h(x3)=4,那么x1+x2+x3=(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案