若(
1
2
+2x)n展開(kāi)式中前三項(xiàng)的二項(xiàng)式系數(shù)之和為79,求展開(kāi)式中系數(shù)最大的項(xiàng).
考點(diǎn):二項(xiàng)式定理
專題:二項(xiàng)式定理
分析:由條件求得n=12,再求得通項(xiàng)公式為 Tr+1=
C
r
12
•22r-12•xr.由
C
r
12
•4r-6
≥C
r+1
12
•4r-5
C
r
12
•4r-6
≥C
r-1
12
•4r-7
,求得r=10,可得結(jié)論.
解答: 解:由題意可得
C
0
n
+
C
1
n
+
C
2
n
=1+n+
n(n-1)
2
=79,解得n=-13(舍去)或 n=12,
故(
1
2
+2x)12展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
12
(
1
2
)
12-r
•(2x)r=
C
r
12
•22r-12•xr
要使第r+1項(xiàng)的系數(shù)最大,只要
C
r
12
•22r-12=
C
r
12
•4r-6 最大.
C
r
12
•4r-6
≥C
r+1
12
•4r-5
C
r
12
•4r-6
≥C
r-1
12
•4r-7
,可得
47
5
≤r≤
52
5
,∴r=10,
即第11項(xiàng)的系數(shù)最大.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=log3
1
2
,b=(
1
3
-2,c=(
1
2
3,則a,b,c的大小順序?yàn)椋ā 。?/div>
A、b<c<a
B、b<a<c
C、a<c<b
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(x+
1
2
n的展開(kāi)式中前三項(xiàng)的系數(shù)成等差數(shù)列,設(shè)(x+
1
2
n=a0+a1x+a2x2+…+anxn;求:
(Ⅰ)求n的值;
(Ⅱ)求a0-a1+a2+…+(-1)nan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sinx+
3
cosx+2,x∈R
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值,并指出此時(shí)x的值.
(3)求函數(shù)f(x)在[0,2π]的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且
a+c
2b
=cosA+cosC.
(1)證明:A,B,C成等差數(shù)列;
(2)求y=cos2
A
2
+cos2
B
2
+cos2
C
2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一項(xiàng)“過(guò)關(guān)游戲”規(guī)定:在第n關(guān)要拋擲一顆骰子n次,如果這n次拋擲所出現(xiàn)的點(diǎn)數(shù)之和大于2n-1+1(n∈N*),則算過(guò)關(guān);否則,未過(guò)關(guān).
(1)求在這項(xiàng)游戲中第二關(guān)未過(guò)關(guān)的概率是多少?
(2)求在這項(xiàng)游戲中第三關(guān)過(guò)關(guān)的概率是多少?
(注:骰子是一個(gè)各面上分別有1,2,3,4,5,6點(diǎn)數(shù)的均勻正方體,拋擲骰子落地靜止后,向上一面的點(diǎn)數(shù)為出現(xiàn)點(diǎn)數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x0,y0)是單位圓O:x2+y2=1上的點(diǎn),
(1)若點(diǎn)A在第二象限,且y0=
4
5
時(shí),求以A為切點(diǎn)的圓O的切線方程;
(2)若α的終邊過(guò)點(diǎn)A,且y0>0,x0+y0=-
1
5
,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F(2,0)的距離是它到直線l:x=
1
2
的距離的2倍.
(Ⅰ)求點(diǎn)P的軌跡E的方程;
(Ⅱ)過(guò)點(diǎn)F的直線交E于B,C兩點(diǎn),試判斷以線段BC為直徑的圓是否過(guò)定點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)圓錐底面圓周上兩點(diǎn)A、B間的距離為2,圓錐頂點(diǎn)到直線AB的距離為3,AB和圓錐的軸的距離為1,則該圓錐的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案