【題目】某班一天上午安排語、數(shù)、外、體四門課,其中體育課不能排在第一、第四節(jié),則不同排法的種數(shù)為(
A.24
B.22
C.20
D.12

【答案】D
【解析】解:先排體育課,有2種排法, 再排語、數(shù)、外三門課,有A33種排法,
按乘法原理,不同排法的種數(shù)為2×A33=12.
故選D.
因?yàn)轶w育課不能排在第一、第四節(jié),所以先排體育課,可以排第三、四節(jié),有2種排法,再排語、數(shù)、外三門課,有A33種排法,由此能求出不同排法的種數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sin(θ+π)<0,cos(θ﹣π)>0,則下列不等關(guān)系中必定成立的是(
A.sinθ<0,cosθ>0
B.sinθ>0,cosθ<0
C.sinθ>0,cosθ>0
D.sinθ<0,cosθ<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實(shí)數(shù)集R的函數(shù)f(x)滿足f(1)=4,且f(x)導(dǎo)函數(shù)f′(x)<3,則不等式f(lnx)>3lnx+1的解集為(
A.(1,+∞)
B.(e,+∞)
C.(0,1)
D.(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.類比推理是由特殊到一般的推理
B.演繹推理是特殊到一般的推理
C.歸納推理是個(gè)別到一般的推理
D.合情推理可以作為證明的步驟

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x+1)+2是定義域?yàn)镽的奇函數(shù),則f(e)+f(2﹣e)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若曲線y=x2+ax+b在點(diǎn)(0,1)處的切線方程是x﹣y+1=0,則(
A.a=﹣1,b=﹣1
B.a=﹣1,b=1
C.a=1,b=﹣1
D.a=1,b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部門為了了解青年人喜歡戶外運(yùn)動(dòng)是否與性別有關(guān),運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論為:有( )把握認(rèn)為“喜歡戶外運(yùn)動(dòng)與性別有關(guān)”. 附:(獨(dú)立性檢驗(yàn)臨界值表)

P(K2≥k0

0.05

0.025

0.010

0.005

0.001

k0

3.841

5.024

6.636

7.879

10.828


A.0.1%
B.1%
C.99%
D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法中,正確的是(
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則x≤1”
B.命題“若α>β,則sinα>sinβ”的逆否命題為真命題
C.命題“x∈R,使得x2+x+1<0”的否定是“x∈R,都有x2+x+1>0”
D.“x>1”是“x2+x﹣2>0”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩RB=(
A.{1,5,7}
B.{3,5,7}
C.{1,3,9}
D.{1,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案