【題目】過拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),作AC,BD垂直拋物線的準(zhǔn)線l于C,D,其中O為坐標(biāo)原點(diǎn),則下列結(jié)論正確的是 . (填序號(hào))

②存在λ∈R,使得 成立;
=0;
④準(zhǔn)線l上任意一點(diǎn)M,都使得 >0.

【答案】①②③
【解析】解:對(duì)于①,由 ,可得①正確;
對(duì)于②,設(shè)A(x1 , y1),B(x2 , y2),可得C(﹣ ,y1),D(﹣ ,y2),
又kOA= = ,kAD= ,設(shè)直線AB方程為x=my+
代入拋物線的方程,可得y2﹣2pmy﹣p2=0,
可得y1y2=﹣p2 , 即有y1(y1﹣y2)=y12﹣y1y2=2px1+p2 ,
則kOA=kAD , 即有存在λ∈R,使得 成立,則②正確;
對(duì)于③, =(﹣p,y1)(﹣p,y2)=y1y2+p2=0,可得③正確;
對(duì)于④,由拋物線的定義可得|AB|=|AC|+|BD|,
可得以AB為直徑的圓的半徑與梯形ACDB的中位線長相等,
即有該圓與CD相切,設(shè)切點(diǎn)為M,即有AM⊥BM,則 =0,
則④不正確.
所以答案是:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) , 均為非零向量,已知命題p: = = 的必要不充分條件,命題q:x>1是|x|>1成立的充分不必要條件,則下列命題是真命題的是(
A.p∧q
B.p∨q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P﹣ABC中,底面△ABC滿足BA=BC, ,P在面ABC的射影為AC的中點(diǎn),且該三棱錐的體積為 ,當(dāng)其外接球的表面積最小時(shí),P到面ABC的距離為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為的正方形ADEF與梯形ABCD所在的平面互相垂直,其中ABCD,ABBC,DC=BC=AB=1,點(diǎn)M在線段EC上.

)證明:平面BDM平面ADEF;

)判斷點(diǎn)M的位置,使得三棱錐B﹣CDM的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點(diǎn) 邊上的中線所在的直線方程為, 邊上的高所在直線的方程為

)求的頂點(diǎn)的坐標(biāo).

若圓經(jīng)過不同的三點(diǎn)、,且斜率為的直線與圓相切于點(diǎn),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐O﹣ABC的側(cè)棱OA,OBOC兩兩垂直,且OA=1,OB=OC=2EOC的中點(diǎn).

1)求異面直線BEAC所成角的余弦值;

2)求直線BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,BAC=90°AB=AC=AA1=2,EBC中點(diǎn).

(Ⅰ)求證:A1B//平面AEC1;

()在棱AA1上存在一點(diǎn)M,滿足,求平面MEC1與平面ABB1A1所成銳二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對(duì)其30位親屬的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示他們的飲食指數(shù)(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).

(1)根據(jù)莖葉圖,幫助這位同學(xué)說明這30位親屬的飲食習(xí)慣.

(2)根據(jù)以上數(shù)據(jù)完成如下2×2列聯(lián)表.

(3)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓x2+y2=1上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點(diǎn)為P1 , P2 , 以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案