如果復(fù)數(shù)z1=a+6i,z2=3-4i,且
z1
z2
為純虛數(shù),那么實數(shù)a的值為(  )
A、-
9
2
B、0
C、2
D、8
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,由實部等于0且虛部不等于0求得a的值.
解答: 解:∵z1=a+6i,z2=3-4i,
z1
z2
=
a+6i
3-4i
=
(a+6i)(3+4i)
(3-4i)(3+4i)
=
(3a-24)+(4a+18)i
5
為純虛數(shù),
3a-24=0
4a+18≠0
,解得a=8.
故選:D.
點評:本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若b=2
2
,tanB=2
2
,sinB=2
2
sinC,則a=( 。
A、
7
3
B、B、3
C、3或
7
3
D、2或
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系xOy中,圓C的參數(shù)方程
x=1+cosφ
y=sinφ
(φ為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,則圓C的極坐標方程是( 。
A、ρ=2cosθ
B、ρ=2sinθ
C、ρ=cosθ
D、ρ=sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)sgn(x)=
1,x>0
0,x=0
-1,x<0
,則sgn(sgn(a2-a+1))的值是( 。
A、a2-a+1
B、1
C、0
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,f(x)是偶函數(shù)的是( 。
A、f(x)=2|x|-1
B、f(x)=x2,x∈[-2,2)
C、f(x)=x2+x
D、f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(3,2,1),B(1,0,5),C(0,0,1),則AB的中點M到點C的距離為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(2,-3),
OB
=(-5,4),
OC
=(1-λ,3λ+2).
(Ⅰ)若△ABC為直角三角形,且∠B為直角,求實數(shù)λ的值;
(Ⅱ)若點A、B、C能構(gòu)成三角形,求實數(shù)λ應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|+3x.
(Ⅰ)當a=-1時,求不等式f(x)≥3x+2的解集;
(Ⅱ)如果a>0,且不等式f(x)≤0的解集為{x|x≤-1},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx在x=1處有極值-2.
(1)求常數(shù)a、b;
(2)求曲線y=
f(x)
x
與直線y=x-1所圍成圖形的面積.

查看答案和解析>>

同步練習冊答案