8.已知函數(shù)f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π,則f(x)的圖象( 。
A.關(guān)于直線x=$\frac{π}{4}$對(duì)稱B.關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱
C.關(guān)于直線x=$\frac{π}{3}$對(duì)稱D.關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱

分析 由調(diào)件利用正弦函數(shù)的周期性求得ω的值,可得它的解析式,再利用它的圖象的對(duì)稱性,得出結(jié)論.

解答 解:函數(shù)f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{ω}$=π,∴ω=2,f(x)=$\frac{1}{3}$sin(2x+$\frac{π}{3}$).
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,故函數(shù)f(x)的圖象的對(duì)稱軸方程為 x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
令2x+$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{6}$,故函數(shù)f(x)的圖象的對(duì)稱中心為($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z,
故選:D.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性和它的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,a=1,b=6,C=60°,則三角形的面積為(  )
A.$\frac{3}{2}$B.$\frac{3\sqrt{3}}{2}$C.3$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A={x|1<x-1≤4},B=(-∞,a),若A⊆B,則實(shí)數(shù)a的取值范圍是(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.定義域?yàn)镽的偶函數(shù)f(x)的最小正周期是π,當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)=sinx.
(1)求x∈[$\frac{π}{2}$,π]時(shí),f(x)的解析式;
(2)畫出函數(shù)f(x)在[-π,π]上的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知A,B,C,D是空間不共面四點(diǎn).且滿足AB=CD,AC=BD,AD=BC,則△BCD是( 。
A.鈍角三角形B.直角三角形C.銳角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a、b、c組成一個(gè)公差為d=-1的等差數(shù)列,若A=2C,試求△ABC的三邊a,b,c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=sinωx•cosωx的最小正周期為2,則ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{\sqrt{5}}{2}$,點(diǎn)A(0,1)與雙曲線上的點(diǎn)的最小距離是$\frac{2}{5}$$\sqrt{30}$,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)y=2sin(ωx+φ)在區(qū)間[0,$\frac{4}{3}$π]上單調(diào)遞增,且f($\frac{π}{3}$)=0,f($\frac{4}{3}$π)=2,則函數(shù)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案