A. | 關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | B. | 關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱 | ||
C. | 關(guān)于直線x=$\frac{π}{3}$對(duì)稱 | D. | 關(guān)于點(diǎn)($\frac{π}{3}$,0)對(duì)稱 |
分析 由調(diào)件利用正弦函數(shù)的周期性求得ω的值,可得它的解析式,再利用它的圖象的對(duì)稱性,得出結(jié)論.
解答 解:函數(shù)f(x)=$\frac{1}{3}$sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為$\frac{2π}{ω}$=π,∴ω=2,f(x)=$\frac{1}{3}$sin(2x+$\frac{π}{3}$).
令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,故函數(shù)f(x)的圖象的對(duì)稱軸方程為 x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
令2x+$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{6}$,故函數(shù)f(x)的圖象的對(duì)稱中心為($\frac{kπ}{2}$-$\frac{π}{6}$,0),k∈Z,
故選:D.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性和它的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 3$\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 鈍角三角形 | B. | 直角三角形 | C. | 銳角三角形 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | π | C. | 2π | D. | 4π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com