設(shè)函數(shù),曲線過(guò)點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求a和b的值; (2)證明:

(1); (2)詳見(jiàn)試題解析.

解析試題分析:(1) 首先由曲線過(guò)點(diǎn)列方程求得的值.再求的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義得列方程,解這個(gè)方程即可得的值;(2) 由(1)可得的解析式要證,構(gòu)造函數(shù)只要證恒成立即可,為此可利用導(dǎo)數(shù)求函數(shù)上的最小值,通過(guò),來(lái)證明,進(jìn)而證明
試題解析:(1)解:曲線過(guò)點(diǎn)又曲線在點(diǎn)處的切線斜率為2,代入上式得
(2)證明:由(1)得要證,構(gòu)造函數(shù)只要證恒成立即可.
當(dāng)時(shí),內(nèi)是減函數(shù);
當(dāng)時(shí),上是增函數(shù),當(dāng)時(shí),取最小值

考點(diǎn):1.導(dǎo)數(shù)的幾何意義;2.利用導(dǎo)數(shù)證明不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),().
(1)設(shè),令,試判斷函數(shù)上的單調(diào)性并證明你的結(jié)論;
(2)若的定義域和值域都是,求的最大值;
(3)若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象如圖,直線在原點(diǎn)處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.

(1)求的解析式;
(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)沒(méi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù)
(1)當(dāng)時(shí),寫出函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)在區(qū)間[1,2]上的最小值;
(3)設(shè),函數(shù)在(m,n)上既有最大值又有最小值,請(qǐng)分別求出m,n的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)。
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間并比較的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若曲線在點(diǎn)處的切線平行于軸,求的值;
(2)當(dāng)時(shí),若直線與曲線上有公共點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案