已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.

(Ⅰ)切線方程為;(Ⅱ)當(dāng)時(shí),上單調(diào)遞增;
當(dāng)時(shí),、上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時(shí),、上單調(diào)遞增,在上單調(diào)遞減.

解析試題分析:(Ⅰ)將代入得:,利用導(dǎo)數(shù)便可求得曲線在點(diǎn)處的切線方程;
(Ⅱ)求導(dǎo)得:.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/03/e/1q01v3.png" style="vertical-align:middle;" />,所以只需考查的符號(hào),要考查的符號(hào),就需要比較的大小.由得:,所以時(shí);時(shí)時(shí);由此分類討論,便可得函數(shù)的單調(diào)性.
試題解析:(Ⅰ)當(dāng)時(shí),,則切點(diǎn)為,
,則切線方程為;
(Ⅱ).
當(dāng)時(shí), ,所以上單調(diào)遞增;
當(dāng)時(shí),,由得:,所以、上單調(diào)遞增,在上單調(diào)遞減;
當(dāng)時(shí),,得:,所以、上單調(diào)遞增,在上單調(diào)遞減.
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的最小正周期和最小值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)試求函數(shù)的單調(diào)區(qū)間和極值;
(2)若 直線與曲線相交于不同兩點(diǎn),若 試證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)點(diǎn)為函數(shù)的圖象上任意一點(diǎn),若曲線在點(diǎn)處的切線的斜率恒大于,
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若函數(shù)在[1,4]上是減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),曲線過(guò)點(diǎn),且在點(diǎn)處的切線斜率為2.
(1)求a和b的值; (2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),
(1)記的導(dǎo)函數(shù),若不等式 在上有解,求實(shí)數(shù)的取值范圍;
(2)若,對(duì)任意的,不等式恒成立,求m(m∈Z,m1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)上的極值;
(2)證明:當(dāng)時(shí),;
(3)證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案