【題目】已知中心在原點O,焦點在x軸上的橢圓,離心率 ,且橢圓過點 . (Ⅰ)求橢圓的方程;
(Ⅱ)橢圓左,右焦點分別為F1 , F2 , 過F2的直線l與橢圓交于不同的兩點A、B,則△F1AB的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
【答案】解:(Ⅰ)由題意可設(shè)橢圓方程為 .
則 ,解得:a2=4,b2=3.
∴橢圓方程為 ;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),不妨y1>0,y2<0,設(shè)△F1AB的內(nèi)切圓的半徑R,
則△F1AB的周長=4a=8, (|AB|+|F1A|+|F1B|)R=4R,
因此 最大,R就最大,
由題知,直線l的斜率不為零,可設(shè)直線l的方程為x=my+1,
由 ,得(3m2+4)y2+6my﹣9=0,
.
則 = ,
令 ,則m2=t2﹣1,
∴ = ,
令f(t)=3t+ ,則f′(t)=3﹣ ,
當t≥1時,f′(t)≥0,f(t)在[1,+∞)上單調(diào)遞增,有f(t)≥f(1)=4, ≤3,
即當t=1,m=0時, ≤3,
由 =4R,得Rmax= ,這時所求內(nèi)切圓面積的最大值為 .
故直線l:x=1,△F1AB內(nèi)切圓面積的最大值為 .
【解析】(Ⅰ)設(shè)橢圓方程,由題意列關(guān)于a,b,c的方程組求解a,b,c的值,則橢圓方程可求;(Ⅱ)設(shè)A(x1,y1),B(x2,y2),不妨設(shè)y1>0,y2<0,設(shè)△F1AB的內(nèi)切圓的徑R,則△F1AB的周長=4a=8, = (|AB|+|F1A|+|F1B|)R=4R,因此 最大,R就最大.設(shè)直線l的方程為x=my+1,與橢圓方程聯(lián)立,從而可表示△F1AB的面積,利用換元法,借助于導(dǎo)數(shù),即可求得結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B、C、D、E五輛汽車,其中A、B兩輛汽車的車牌尾號均為1,C、D兩輛汽車的車牌尾號均為2,E車的車牌尾號為6.已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:
工作日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
限行車牌尾號 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
例如,星期一禁止車牌尾號為0和5的車輛通行.
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 且 .
(1)當 時,求函數(shù) 的單調(diào)區(qū)間和極值;
(2)求函數(shù) 在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的一個焦點與拋物線 的焦點 重合,且點 到直線 的距離為 , 與 的公共弦長為 .
(1)求橢圓 的方程及點 的坐標;
(2)過點 的直線 與 交于 兩點,與 交于 兩點,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F2 , P分別為雙曲線 的右焦點與右支上的一點,O為坐標原點,若2 |,且 ,則該雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是( )
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A是拋物線y2=4x上的一點,以點A和點B(2,0)為直徑的圓C交直線x=1于M,N兩點.直線l與AB平行,且直線l交拋物線于P,Q兩點.
(Ⅰ)求線段MN的長;
(Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長與|MN|相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面α⊥平面β,α∩β=直線l,A,C是α內(nèi)不同的兩點,B,D是β內(nèi)不同的兩點,且A,B,C,D直線l,M,N分別是線段AB,CD的中點.下列判斷正確的是( )
A.當|CD|=2|AB|時,M,N兩點不可能重合
B.M,N兩點可能重合,但此時直線AC與直線l不可能相交
C.當AB與CD相交,直線AC平行于l時,直線BD可以與l相交
D.當AB,CD是異面直線時,MN可能與l平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽.現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一粒可賺1.2元,如果雕刻師當天超額完成任務(wù),則超出的部分每粒多賺0.5元;如果當天未能按量完成任務(wù),則按完成的雕刻量領(lǐng)取當天工資. (Ⅰ)求雕刻師當天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:
雕刻量n | 210 | 230 | 250 | 270 | 300 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┰诋斕斓氖杖氩坏陀276元的條件下,求當天雕刻量不低于270個的概率;
(ⅱ)若X表示雕刻師當天的收入(單位:元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com