【題目】下面(A)(B)(C)(D)為四個平面圖形:
(1)數(shù)出每個平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù),并將下表補(bǔ)充完整:
交點(diǎn)數(shù) | 邊數(shù) | 區(qū)域數(shù) | |
(A) | 4 | 5 | 2 |
(B) | 5 | 8 | |
(C) | 12 | 5 | |
(D) | 15 |
(2)觀察表格,若記一個平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)分別為E、F、G,試猜想E、F、G之間的數(shù)量關(guān)系(不要求證明).
【答案】
(1)解:
交點(diǎn)數(shù) | 邊數(shù) | 區(qū)域數(shù) | |
(A) | 4 | 5 | 2 |
(B) | 5 | 8 | 4 |
(C) | 8 | 12 | 5 |
(D) | 10 | 15 | 6 |
(2)解:觀察表格,若記一個平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)分別為E,F(xiàn),G,
猜想E,F(xiàn),G之間的等量關(guān)系E+G﹣F=1
【解析】(1)本題給出平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù),只要用數(shù)出結(jié)果填入表格即可.(2)觀察表格,若記一個平面圖形的交點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)分別為E,F(xiàn),G,即可猜想E,F(xiàn),G之間的等量關(guān)系.
【考點(diǎn)精析】通過靈活運(yùn)用歸納推理,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會發(fā)動公務(wù)員參與到植樹綠化活動中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會在植樹前對樹苗進(jìn)行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)某科考試中,從甲、乙兩個班級各抽取10名同學(xué)的成績進(jìn)行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.設(shè)甲、乙兩個班所抽取的10名同學(xué)成績方差分別為 、 ,比較 、 的大。ㄖ苯訉懡Y(jié)果,不必寫過程);
(Ⅱ)設(shè)集合 ,B={x|m+x2≤1,m<1},命題p:x∈A;命題q:x∈B,若p是q的必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障高考的公平性,高考時每個考點(diǎn)都要安裝手機(jī)屏蔽儀,要求在考點(diǎn)周圍1 km內(nèi)不能收到手機(jī)信號.檢查員抽查青島市一考點(diǎn),在考點(diǎn)正西約 km有一條北偏東60°方向的公路,在此處檢查員用手機(jī)接通電話,以12 km/h的速度沿公路行駛,最長需要多少時間,檢查員開始收不到信號,并至少持續(xù)多長時間該考點(diǎn)才算合格?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣lnx﹣2.
(1)當(dāng)a=1時,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個焦點(diǎn)是F1(﹣2,0),F(xiàn)2(2,0),且橢圓C經(jīng)過點(diǎn)A(0, ).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若過橢圓C的左焦點(diǎn)F1(﹣2,0)且斜率為1的直線l與橢圓C交于P、Q兩點(diǎn),求線段PQ的長(提示:|PQ|= |x1﹣x2|).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:
①同學(xué)甲發(fā)現(xiàn):函數(shù)的定義域?yàn)?/span>;
②同學(xué)乙發(fā)現(xiàn):函數(shù)是偶函數(shù);
③同學(xué)丙發(fā)現(xiàn):對于任意的都有;
④同學(xué)丁發(fā)現(xiàn):對于任意的,都有;
⑤同學(xué)戊發(fā)現(xiàn):對于函數(shù)定義域中任意的兩個不同實(shí)數(shù),總滿足.
其中所有正確研究成果的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子商務(wù)公司對10 000名網(wǎng)絡(luò)購物者2017年度的消費(fèi)情況進(jìn)行統(tǒng)計,發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.
(1)直方圖中的a=_____;
(2)在這些購物者中,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義“三角戀寫法”為“三個人之間寫信,每人給另外兩人之一寫一封信,且任意兩個人不會彼此給對方寫信”,若五個人a,b,c,d,e中的每個人都恰給其余四人中的某一個人寫了一封信,則不出現(xiàn)“三角戀寫法”寫法的寫信情況的種數(shù)為( )
A.704
B.864
C.1004
D.1014
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com