分別求出函數(shù)y=cos6x和y=sin(4x+
π
2
)的最大值和最小值.
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:直接利用余弦函數(shù)與正弦函數(shù)的值域求解即可.
解答: 解:∵函數(shù)y=cosx和y=sinx的值域都是[-1,1],
∴函數(shù)y=cos6x的最大值和最小值分別是,1;-1.
函數(shù)y=sin(4x+
π
2
)的最大值和最小值分別是:1;-1.
點(diǎn)評(píng):本題考查三角函數(shù)值域的求法,基本知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在橢圓中,過焦點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦,叫做橢圓的通徑.如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,其離心率為
1
2
,通徑長(zhǎng)為3.
(1)求橢圓的方程;
(2)過F2的動(dòng)直線l交橢圓于A、B兩點(diǎn),
(ⅰ)問在x軸上是否存在定點(diǎn)C,使
CA
CB
恒為常數(shù)?若存在,求出點(diǎn)C的坐標(biāo);若不存在,說明理由.
(ⅱ)延長(zhǎng)BF1交橢圓于點(diǎn)M,I1、I2分別為△F1BF2、△F1MF2的內(nèi)心,證明四邊形F1I2F2I1與△MF2B的面積的比值恒為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20名學(xué)生某次數(shù)學(xué)考試成績(jī)(單位:分)的頻數(shù)分布直方圖如圖所示.
(Ⅰ)求頻數(shù)直方圖中a的值;
(Ⅱ)分別球出成績(jī)落在[50,60)與[60,70)中的學(xué)生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+m
x
n(m是正實(shí)數(shù))的展開式的二項(xiàng)式系數(shù)之和為256,展開式中含x項(xiàng)的系數(shù)為112.
(1)求m,n的值;
(2)求展開式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和;
(3)若(x+m)n展開式中系數(shù)最大項(xiàng)只有第6項(xiàng)和第7項(xiàng),求m的取值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為a0,a1,a2,a3,…,an(n∈N),bn=
n
i=0
ai
表示a0+a1+a2+a3+…+an,i∈N.
(1)若數(shù)列{an}為等比數(shù)列an=2n(n∈N),求
n
i=0
(biC
 
i
n
);
(2)若數(shù)列{an}為等差數(shù)列an=2n(n∈N),求
n
i=1
(biC
 
i
n
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)使用向量法證明:等邊△ABC中,點(diǎn)D、E分別在邊BC、AC上,且|BD|=
1
3
|BC|,|CE|=
1
3
|CA|,AD,BE相交于點(diǎn)P,求證:AP⊥CP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列:
1
1
,
2
1
,
1
2
3
1
,
2
2
1
3
,
4
1
,
3
2
,
2
3
1
4
,…依它的前10項(xiàng)的規(guī)律,這個(gè)數(shù)列的第2014項(xiàng)a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

所有金屬都能導(dǎo)電,鐵是金屬,所以鐵能導(dǎo)電.屬于
 
推理(填:合情、演繹、類比、歸納).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有兩排座位,前排4個(gè)座位,后排5個(gè)座位,現(xiàn)安排2人就坐,并且這2人不相鄰(一前一后也視為不相鄰),那么不同坐法的種數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案