已知數(shù)列{an}的通項(xiàng)公式為an=n2cosnπ(n∈N*),Sn為它的前n項(xiàng)和,則等于( )
A.1 005 B.1 006
C.2 011 D.2 012
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知等比數(shù)列{an}的前n項(xiàng)積記為Πn,若a3a4a8=8,則Π9=( )
A.512 B.256
C.81 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
將石子擺成如圖的梯形形狀,稱數(shù)列5,9,14,20,…為梯形數(shù),根據(jù)圖形的構(gòu)成,此數(shù)列的第2 012項(xiàng)與5的差即a2 012-5=( )
A.2 018×2 012 B.2 018×2 011
C.1 009×2 012 D.1 009×2 011
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}中,a1=,an=2-(n≥2,n∈N*),數(shù)列{bn}滿足bn=(n∈N*).
(1)證明:數(shù)列{bn}是等差數(shù)列;
(2)若Sn=(a1-1)·(a2-1)+(a2-1)·(a3-1)+…+(an-1)·(an+1-1),是否存在a,b∈Z,使得a≤Sn≤b恒成立?若存在,求出a的最大值與b的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在等差數(shù)列{an}中,已知公差d=2,a2是a1與a4的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,記Tn=-b1+b2-b3+b4-…+(-1)nbn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
要證a2+b2-1-a2b2≤0,只要證明( )
A.2ab-1-a2b2≤0
B.a2+b2-1-≤0
C.-1-a2b2≤0
D.(a2-1)(b2-1)≥0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1,外接圓面積為S2,則=,推廣到空間可以得到類似結(jié)論:已知正四面體P—ABC的內(nèi)切球體積為V1,外接球體積為V2,則=( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com