【題目】已知拋物線過點(diǎn),且焦點(diǎn)為,直線與拋物線相交于兩點(diǎn).
(1)求拋物線的方程,并求其準(zhǔn)線方程;
(2)若直線經(jīng)過拋物線的焦點(diǎn),當(dāng)線段的長(zhǎng)等于5時(shí),求直線方程.
(3)若,證明直線必過一定點(diǎn),并求出該定點(diǎn).
【答案】(1),;(2);(3)證明見解析,.
【解析】
試題分析:(1)由,得,拋物線的方程為,進(jìn)而求解拋物線的準(zhǔn)線方程;(2)若直線經(jīng)過焦點(diǎn),則直線的方程為,即可求解和,再由,即可求解該直線方程;(3)設(shè)直線的方程為代入,得,設(shè),則,,再利用,求得,即可判定直線過定點(diǎn).
試題解析:(1)由,得,拋物線的方程為,
其準(zhǔn)線方程為,焦點(diǎn)為.
(2)若直線經(jīng)過拋物線的焦點(diǎn),則直線的方程為.
,,則,
所以,得,,直線方程為.
(3)設(shè)直線的方程為代入,得.
設(shè),,
則,.
,
∴,直線必過一定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓心坐標(biāo)為的圓與軸及直線分別相切于、兩點(diǎn),另一圓與圓外切,且與軸及直線分別相切于、兩點(diǎn).
(1)求圓和圓的方程;
(2)過點(diǎn)作直線的平行線,求直線被圓截得的弦的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】揚(yáng)州瘦西湖隧道長(zhǎng)米,設(shè)汽車通過隧道的速度為米/秒.根據(jù)安全和車流的需要,當(dāng)時(shí),相鄰兩車之間的安全距離為米;當(dāng)時(shí),相鄰兩車之間的安全距離為米(其中是常數(shù)).當(dāng)時(shí),,當(dāng)時(shí),.
(1)求的值;
(2)一列由輛汽車組成的車隊(duì)勻速通過該隧道(第一輛汽車車身長(zhǎng)為米,其余汽車車身長(zhǎng)為米,每輛汽車速度均相同).記從第一輛汽車車頭進(jìn)入隧道,至第輛汽車車尾離開隧道所用的時(shí)間為秒.
①將表示為的函數(shù);
②要使車隊(duì)通過隧道的時(shí)間不超過秒,求汽車速度的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知α、β是不同的平面,l、m、n是不同的直線,P為空間中一點(diǎn).若α∩β=l,mα、nβ、m∩n=P,則點(diǎn)P與直線l的位置關(guān)系用符號(hào)表示為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(π﹣ωx)cosωx+cos2ωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時(shí)間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn),過點(diǎn);當(dāng)時(shí),圖象是線段,其中.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時(shí)段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習(xí)效果最佳?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)已知,求單調(diào)遞增區(qū)間;
(2)是否存在實(shí)數(shù),使的最小值為0?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個(gè)頂點(diǎn),,,其外接圓為.
(1)求的面積;
(2)若直線過點(diǎn),且被截得的弦長(zhǎng)為2,求直線的方程;
(3)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),,使得點(diǎn)的線段的中點(diǎn),求的半徑的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com