【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè)c=(0,1),若 + =c,求α,β的值.
【答案】
(1)證明:由| ﹣ |= ,即( ﹣ )2= 2﹣2 + 2=2,
又因?yàn)?2= 2=| |2=| |2=1.
所以2﹣2 =2,即 =0,
故 ⊥
(2)解:因?yàn)? + =(cosα+cosβ,sinα+sinβ)=(0,1),
所以 ,
即 ,
兩邊分別平方再相加得1=2﹣2sinβ,
∴sinβ= ,sinα= ,
又∵0<β<α<π,
∴α= ,β= .
【解析】(1)由向量的平方即為模的平方,化簡整理,結(jié)合向量垂直的條件,即可得證;(2)先求出 + 的坐標(biāo),根據(jù)條件即可得到 ,兩邊分別平方并相加便可得到sinβ= ,進(jìn)而得到sinα= ,根據(jù)條件0<β<α<π即可得出α,β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四棱錐V﹣ABCD中,底面ABCD是邊長2為的正方形,其他四個(gè)側(cè)面都是側(cè)棱長為 的等腰三角形.
(1)求正四棱錐V﹣ABCD的體積.
(2)求二面角V﹣BC﹣A的平面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求證:f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為正實(shí)數(shù),若函數(shù)f(x)=ax3+bx+ab﹣1是奇函數(shù),則f(2)的最小值是( )
A.2
B.4
C.8
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為正數(shù)的等差數(shù)列,a1a2=3,a2a3=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(an+1)2 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由函數(shù)y=sin x 的圖象經(jīng)過( )變換,得到函數(shù) y=sin(2x﹣ )的圖象.
A.縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的 ,再向右平移 個(gè)單位
B.縱坐標(biāo)不變,向右平移 個(gè)單位,再橫坐標(biāo)縮小到原來的
C.縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大到原來的 2 倍,再向左平移 個(gè)單位
D.縱坐標(biāo)不變,向左平移 個(gè)單位,再橫坐標(biāo)擴(kuò)大到原來的 2 倍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)于函數(shù)f(x)的定義域中任意的x1 , x2(x1≠x2),恒有 和 成立,則稱函數(shù)f(x)為“單凸函數(shù)”,下列有四個(gè)函數(shù):
(1)y=2x;(2)y=lgx;(3) ;(4)y=x2 .
其中是“單凸函數(shù)”的序號(hào)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com