已知雙曲線y2-
x2
m
=1的中心在原點O,雙曲線兩條漸近線與拋物線y2=mx交于A,B兩點,且S△OAB=9
3
,則雙曲線的離心率為(  )
A、
3
B、2
C、
5
D、
7
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:求得雙曲線y2-
x2
m
=1的兩條漸近線方程為y=±
x
m
,與拋物線y2=mx聯(lián)立可得A,B的坐標,利用S△OAB=9
3
,求出m,即可求出雙曲線的離心率.
解答: 解:雙曲線y2-
x2
m
=1的兩條漸近線方程為y=±
x
m

與拋物線y2=mx聯(lián)立可得x=m2,∴A(m,m
m
),B(m,-m
m
),
∵S△OAB=9
3
,
1
2
•2m
m
•m=9
3

∴m=3,
∴c2=1+m=4,
∴c=2
∴雙曲線的離心率為2.
故選:B.
點評:本題考查雙曲線的性質,解題的關鍵是求出雙曲線的漸近線方程,解出A,B兩點的坐標.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖是正方體的平面展開圖,則在這個正方體中,正確的是
 
(寫出你認為正確的結論序號)
①AF∥DE;      
②DE∥MN;
③AC⊥MN;     
④AC與DE是異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,5],部分對應值如圖:
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導函數(shù)y=f′(x)的圖象如圖所示,下列關于f(x)的命題:
①函數(shù)f(x)是周期函數(shù); 
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最小值為0;
④函數(shù)y=f(x)-a的零點個數(shù)可能為0、1、2、3、4個.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

存在x∈R,使|3x+1|≤|2x|+a成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=sin(2x-
π
6
)的圖象,可以將函數(shù)y=sin2x的圖象( 。
A、向右平移
π
6
個單位
B、向右平移
π
12
個單位
C、向左平移
π
6
個單位
D、向左平移
π
12
個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“若g′(x0)=0,則x0是函數(shù)y=g(x)的極值點,因為g(x)=x3中,g′(x)=3x2且g′(0)=0,所以0是g(x)=x3的極值點.”在此“三段論”中,下列說法正確的是( 。
A、推理過程錯誤
B、大前提錯誤
C、小前提錯誤
D、大、小前提錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=a-i,z2=1-2i,若
z1
z2
是純虛數(shù),則實數(shù)a的值為(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有限集合的元素可以一一數(shù)出來,無限集合的元素雖然不能數(shù)盡,但是可以比較兩個集合元素個數(shù)的多少,例如,對于集合A={1,2,3,…,n,…}與B={2,4,6,…,2n,…},我們可以設計一種方法得出A與B的元素個數(shù)一樣多的結論,類似地,給出下列4組集合:
(1)A={1,2,3,…,n,…}與B={2,4,8,…,2n,…}
(2)A=[0,1]與B=[0,2]
(3)A=(0,2]與B=[-1,+∞)
(4)A={(x,y)|x2+y2=1}與B={(x,y)|
x2
4
+y2=1
}
元素個數(shù)一樣多的有( 。
A、1組B、2組C、3組D、4組

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個樣本容量為10的樣本數(shù)據(jù),它們組成一個公差不為0的等差數(shù)列{an},若a8=15,且a1,a2,a5成等比數(shù)列,則此樣本的平均數(shù)和中位數(shù)分別是( 。
A、11,10
B、10,10
C、11,12
D、10,12

查看答案和解析>>

同步練習冊答案