(2011•合肥三模)已知P為直線x+y-25=0任意一點(diǎn),點(diǎn)Q為
x2
16
+
y2
9
=1
上任意一點(diǎn),則|PQ|的最小值為
10
2
10
2
分析:設(shè)動點(diǎn)P(ρcosθ,ρsinθ),由點(diǎn)到直線的距離公式求出它到直線的距離d,再由及正弦函數(shù)的有界性求出答案.
解答:解:∵點(diǎn)Q為
x2
16
+
y2
9
=1
上任意一點(diǎn),
設(shè)動點(diǎn)Q(4cosθ,3sinθ)到直線x+y-25=0的距離等于
d=
|4cosθ+3sinθ-25|
1+1
=
|5sin(θ+α)-25|
2
=
-5sin(θ+α)+25
2
,
∵-5sin(θ+α)+25∈[20,30],
∴d∈[
20
2
,
30
2
],
∴d的最小值為
20
2
=10
2

故答案為:10
2
點(diǎn)評:本題考查點(diǎn)到直線的距離公式的應(yīng)用,橢圓的參數(shù)方程,以及正弦函數(shù)的有界性.利用正弦函數(shù)的有界性求出d的最小值是本題的難點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)設(shè)函數(shù)f(x)的定義域?yàn)镽,若f(x+1)與f(x-1)都是奇函數(shù),則函數(shù)y=f(x)在區(qū)間[0,100]上至少有個
50
50
零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)已知
a
=(sinx+cosx,sinx-cosx),
b
=(sinx,cosx)
(1)若
a
b
,求x的值;
(2)當(dāng)x∈(-
π
6
π
4
)
時,求函數(shù)f(x)=
a
b
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)已知拋物線C的方程為x2=2py(p>0),過拋物線上點(diǎn)M(-2
p
,p)作△MAB,A、B兩均在拋物線上.過M作x軸的平行線,交拋物線于點(diǎn)N.
(I)若MN平分∠AMB,求證:直線AB的斜率為定值;
(II)若直線AB的斜率為
p
,且點(diǎn)N到直線MA,MB的距離的和為4p,試判斷△MAB的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)在△ABC中,AB⊥AC,AB=6,AC=4,D為AC的中點(diǎn),點(diǎn)E在邊AB上,且3AE=AB,BD與CE交于點(diǎn)G,則
AG
BC
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•合肥三模)5名男性驢友到某旅游風(fēng)景區(qū)游玩,晚上入住一家賓館,賓館有3間客房可選,一間客房為3人間,其余為2人間,則5人入住兩間客房的不同方法有
20
20
種(用數(shù)字法作答).

查看答案和解析>>

同步練習(xí)冊答案