11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,x≥1}\\{2,x<1}\end{array}\right.$,則滿足xf(x-1)≥10的x取值范圍為[5,+∞).

分析 討論當x-1≥1即x≥2時;當x-1<1即x<2時,得到具體不等式,分別解不等式,求并集即可得到所求解集.

解答 解:當x-1≥1即x≥2時,
xf(x-1)≥10,即為x(x-3)≥10,
解得x≥5或x≤-2,
即為x≥5;
當x-1<1即x<2時,
xf(x-1)≥10,即為2x≥10,
解得x≥5.
綜上可得不等式的解集為[5,+∞).
故答案為:[5,+∞).

點評 本題考查分段函數(shù)的運用:解不等式,注意運用分類討論思想方法,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線x=1上的點P到直線x-y=0的距離為$\sqrt{2}$,則點P的坐標為( 。
A.(1,-1)B.(1,3)C.(1,-2)或(1,2)D.(1,-1)或(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)a,b∈R,則“a+b≥4”是“a≥2且b≥2”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,角A、B、C所對的邊分別為a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列說法正確的是(  )
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.在△ABC中,“A>B”是“sin2A>sin2B”必要不充分條件
C.“若tanα$≠\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},則A∩(∁UB)為( 。
A.{1,4,6}B.{2,4,6}C.{2,4}D.{4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.要得到y(tǒng)=sin$\frac{x}{2}$的圖象,只需將y=cos($\frac{x}{2}$-$\frac{π}{4}$)的圖象上的所有點( 。
A.向右平移$\frac{π}{2}$B.向左平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.lg2+lg5=1;${2^{{{log}_2}3}}-{8^{\frac{1}{3}}}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓Cn:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=n(a>b>1,n∈N*),F(xiàn)1,F(xiàn)2是橢圓C4的焦點,A(2,$\sqrt{2}$)是橢圓C4上一點,且$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0;
(1)求Cn的離心率并求出C1的方程;
(2)P為橢圓C2上任意一點,直線PF1交橢圓C4于點E,F(xiàn),直線PF2交橢圓C4于點M,N,設(shè)直線PF1的斜率為k1,直線PF2的斜率為k2;
(i)求證:k1k2=-$\frac{1}{2}$    
(ii)求|MN|?|EF|的取值范圍.

查看答案和解析>>

同步練習冊答案