【題目】已知函數(shù)f(x)=cos x,a等于拋擲一顆均勻的正六面體骰子得到的點數(shù),則y=f(x)在[0,4]上有偶數(shù)個零點的概率是

【答案】
【解析】解:由題意知,
a=1時,f(x)=cos x,在[0,4]上的零點為 共1個;
a=2時,f(x)=cos x,在[0,4]上的零點為 , , 共3個;
a=3時,f(x)=cosπx,在[0,4]上的零點為 , , 共4個;
a=4時,f(x)=cos x,在[0,4]上的零點為 共5個;
a=5時,f(x)=cos x,在[0,4]上的零點為 共7個;
a=6時,f(x)=cos2πx,在[0,4]上的零點為 共8個;
∴y=f(x)在[0,4]上有偶數(shù)個零點的概率是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函數(shù)f(x)在x=2處取得極值.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點A(a,a),B(2,3),C(3,2).
(1)若向量 的夾角為鈍角,求實數(shù)a的取值范圍;
(2)若a=1,點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上, =m +n (m,n∈R),求m﹣n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,分別是的中點,則下列說法錯誤的是(  )

A. B. 平面

C. D. 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡點米布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:

井號

1

2

3

4

5

6

坐標(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

鉆探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;

(Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的,的值(,精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?(參考公式和計算結果:,

(Ⅲ)設出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)X的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項,
(1)求數(shù)列{an}的通項公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓O為△ABC的外接圓,D為的中點,BD交AC于E.
(Ⅰ)證明:AD2=DEDB;
(Ⅱ)若AD∥BC,DE=2EB,AD= , 求圓O的半徑.

查看答案和解析>>

同步練習冊答案