【題目】已知函數(shù)y=a-bcos(b>0)的最大值為,最小值為-.
(1)求a,b的值;
(2)求函數(shù)g(x)=-4asin的最小值并求出對應(yīng)x的集合.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,橢圓的極坐標方程為,其左焦點在直線上.
(1)若直線與橢圓交于兩點,求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點的橫坐標縮短到原來的一半(縱坐標不變),再向右平移個單位長度后,所得到的圖像關(guān)于直線對稱,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足時按計算)需再收5元.公司從承攬過的包裹中,隨機抽取100件,其重量統(tǒng)計如下:
包裹重量(單位:) | |||||
包裹件數(shù) | 43 | 30 | 15 | 8 | 4 |
公司又隨機抽取了60天的攬件數(shù),得到頻數(shù)分布表如下:
攬件數(shù) | |||||
天數(shù) | 6 | 6 | 30 | 12 | 6 |
以記錄的60天的攬件數(shù)的頻率作為各攬件數(shù)發(fā)生的概率
(1)計算該公司3天中恰有2天攬件數(shù)在的概率;
(2)估計該公司對每件包裹收取的快遞費的平均值;
(3)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用做其他費用,目前前臺有工作人員3人,每人每天攬件不超過150件,每人每天工資100元,公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤有利?
(注:同一組中的攬件數(shù)以這組數(shù)據(jù)所在區(qū)間中點值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),。
Ⅰ.求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
Ⅱ.當時,方程恰有兩個不同的實數(shù)根,求實數(shù)的取值范圍;
Ⅲ.將函數(shù)的圖象向右平移個單位后所得函數(shù)的圖象關(guān)于原點中心對稱,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求在點P(1,)處的切線方程;
(2)若關(guān)于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍;
(3)若存在兩個正實數(shù),滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè),且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,兩個城鎮(zhèn)相距20公里,設(shè)是中點,在的中垂線上有一高鐵站,的距離為10公里.為方便居民出行,在線段上任取一點(點與,不重合)建設(shè)交通樞紐,從高鐵站鋪設(shè)快速路到處,再鋪設(shè)快速路分別到,兩處.因地質(zhì)條件等各種因素,其中快速路造價為3百萬元/公里,快速路造價為2百萬元/公里,快速路造價為4百萬元/公里, 設(shè),總造價為(單位:百萬元).
(1)求關(guān)于的函數(shù)關(guān)系式,并指出函數(shù)的定義域;
(2)求總造價的最小值,并求出此時的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com