已知二次函數(shù)圖象的對(duì)稱軸是x=2,又經(jīng)過(guò)點(diǎn)(2,3),且與一次函數(shù)y=3x+b的圖象交于點(diǎn)(0,-1),則過(guò)一次函數(shù)與二次函數(shù)的圖象的另一個(gè)交點(diǎn)的坐標(biāo)是(    )

A.(1,2)            B.(2,1)            C.(-1,2)           D.(1,-2)

解析:要想求兩個(gè)函數(shù)圖象的交點(diǎn)的坐標(biāo),首先必須求出兩個(gè)函數(shù)的解析式,然后將解析式聯(lián)立方程組,方程組的解就是兩個(gè)函數(shù)圖象交點(diǎn)的坐標(biāo).

已知二次函數(shù)圖象的對(duì)稱軸為x=2,且又經(jīng)過(guò)點(diǎn)(2,3),則二次函數(shù)圖象的頂點(diǎn)為(2,3),設(shè)二次函數(shù)為y=a(x-2)2+3;把(0,-1)代入,得a=-1,

∴y=-x2+4x-1①再把(0,-1)代入y=3x+b,得b=-1,

∴y=3x-1②,

聯(lián)立①②得

消去y,得x2-x=0,

∴方程組的解為

因此,所求另一個(gè)交點(diǎn)坐標(biāo)為(1,2),故選A.

答案:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=f(x)的圖象為開(kāi)口向下的拋物線,且對(duì)任意x∈R都有f(1-x)=f(1+x).若向量
a
=(
m
,-1
),
b
=(
m
,-2
),則滿足不等式f(
a
b
)>f(-1)的m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx滿足條件:①對(duì)任意x∈R,均有f(x-4)=f(2-x) ②函數(shù)f(x)的圖象與y=x相切.
(1)求f(x)的解析式;
(2)若g(x)=2f(x)-18x+q+3是否存在常數(shù)t (t≥0),當(dāng)x∈[t,10]時(shí),g(x)的值域?yàn)閰^(qū)間D,且D的長(zhǎng)度為12-t,若存在,請(qǐng)求出t值,若不存在,請(qǐng)說(shuō)明理由(注:[a,b]的區(qū)間長(zhǎng)度為b-a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)k≤1圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),其導(dǎo)函數(shù)為f′(x)=6x-2,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上;又b1=1,cn=
1
3
(an+2),且1+2a2+22b3+…+2n-2bn-1+2n-1bn=cn,對(duì)任意n∈N*都成立,
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{cn•bn}的前n項(xiàng)和Tn
(3)求證:(i)ln(x+1)<(x>0);(ii)
n
i=2
lnai
ai2
2n2-n-1
4(n+1)
(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省平武中學(xué)2011屆高三一診模擬演練理科數(shù)學(xué)試題 題型:044

已知二次函數(shù)g(x)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足g(x+1)=g(x)+2x+1.設(shè)函數(shù)f(x)=mg(x)-ln(x+1),其中m為非零常數(shù).

(1)求函數(shù)g(x)的解析式;

(2)當(dāng)-2<m<0時(shí),判斷函數(shù)f(x)的單調(diào)性并且說(shuō)明理由;

(3)證明:對(duì)任意的正整數(shù)n,不等式ln(+1)>恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年華師一附中期中檢測(cè)文)(12分)

已知二次函數(shù)滿足條件:

①對(duì)任意,均有;②函數(shù)的圖象與直線相切

(I)求函數(shù)的解析式;

   (II)當(dāng)且僅當(dāng)時(shí),恒成立,試求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案