4.已知z=$\frac{10i}{3+i}$,|z|=$\sqrt{10}$.

分析 根據(jù)復(fù)數(shù)的運算法則和復(fù)數(shù)的模的計算即可.

解答 解:z=$\frac{10i}{3+i}$=$\frac{10i(3-i)}{(3+i)(3-i)}$=$\frac{10+30i}{9+1}$=1+3i,
則|z|=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
故答案為:$\sqrt{10}$.

點評 本題考查了復(fù)數(shù)的運算法則和復(fù)數(shù)的模,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(1)=f(5),則拋物線y=ax2+bx+c的對稱軸是x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某種型號的電子管的壽命X(以小時計)具有以下概率密度;
f(x)=$\left\{\begin{array}{l}{1000/{x}^{2}}&{x>1000}\\{0}&{其它}\end{array}\right.$,現(xiàn)有一大批此種管子(設(shè)各電子管損壞與否相互獨立),任取5只,問其中至少有2只壽命大于1500小時的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等比數(shù)列1,$\sqrt{3}$,3,…中,27$\sqrt{3}$是( 。
A.第6項B.第7項C.第8項D.第9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x=$\frac{2π}{3}$和x=$\frac{7π}{6}$是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<2π)的兩條相鄰的對稱軸,且函數(shù)f(x)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上單調(diào)遞減,則φ的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=2sin(2x-$\frac{π}{4}$)的相位、頻率分別為(  )
A.2x-$\frac{π}{4}$,$\frac{1}{2π}$B.-$\frac{π}{4}$,$\frac{1}{2π}$C.2x-$\frac{π}{4}$,$\frac{1}{π}$D.-$\frac{π}{4}$,$\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$后函數(shù)圖象關(guān)于原點對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x,y)=x2+y2-2x+4y+4.
(I)若f(x,x)>2ax2+2ax對于任意的實數(shù)x都恒成立,求實數(shù)a的最值范圍;
(Ⅱ)是否存在斜率為1的直線l,使l被曲線C:f(x,y)=8截得的弦為AB,且以AB為直徑的圓恰好過曲線C的中心?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC中,A(-4,3),B(2,2),C(-1,8),求向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案