19.直線x=$\frac{2π}{3}$和x=$\frac{7π}{6}$是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<2π)的兩條相鄰的對(duì)稱軸,且函數(shù)f(x)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上單調(diào)遞減,則φ的值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{7π}{6}$

分析 由已知求出函數(shù)周期,得到ω值,結(jié)合函數(shù)f(x)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上單調(diào)遞減,0<φ<2π,可得答案.

解答 解:∵直線x=$\frac{2π}{3}$和x=$\frac{7π}{6}$是函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<2π)的兩條相鄰的對(duì)稱軸,
∴$\frac{7π}{6}$-$\frac{2π}{3}$=$\frac{π}{2}$=$\frac{T}{2}$,
∴T=π,
又∵ω>0,
∴ω=2,
又由函數(shù)f(x)在區(qū)間($\frac{π}{6}$,$\frac{2π}{3}$)上單調(diào)遞減,
∴當(dāng)x=$\frac{π}{6}$時(shí),函數(shù)取最大值,
即2×$\frac{π}{6}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{6}$+2kπ,k∈Z,
又∵0<φ<2π,
∴φ=$\frac{π}{6}$,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦型函數(shù)的圖象和性質(zhì),熟練掌握正弦型函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{2}$sin($\frac{5π}{4}$-2x)+1.
(1)求它的振幅、最小正周期、初相;
(2)畫出函數(shù)y=f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2sinωx(0<ω<1)在[0,$\frac{π}{2}$]上的最大值為$\sqrt{2}$,當(dāng)把f(x)的圖象上的所有點(diǎn)向右平移φ(0<φ<$\frac{π}{2}$)個(gè)單位后,得到圖象對(duì)應(yīng)的函數(shù)g(x)的圖象關(guān)于直線x=$\frac{7π}{6}$對(duì)稱.
(1)求函數(shù)g(x)的解析式:
(2)在△ABC中.一個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知g(x)在y軸右側(cè)的第一個(gè)零點(diǎn)為C,若c=4,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知指數(shù)函數(shù)y=ax的圖象經(jīng)過點(diǎn)(2,3),則函數(shù)的解析式是y=$\sqrt{3}$x,定義域是R,值域是(0,+∞),在定義域內(nèi)是增函數(shù)(用“增”“減”填空)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若不同兩點(diǎn)P,Q的坐標(biāo)分別為(a,b),(3-b,3-a),則線段PQ的垂直平分線的方程為x+y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知z=$\frac{10i}{3+i}$,|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.sinα+cosα=$\frac{2}{3}$,α∈(0,π),則sinα-cosα為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,兩射線OA與OB交于O,則下列選項(xiàng)中哪些向量的終點(diǎn)落在陰影區(qū)域內(nèi)(不含邊界)
①$\overrightarrow{OA}$+2$\overrightarrow{OB}$; ②$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$  ③$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$  ④$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{5}$$\overrightarrow{OB}$.
A.①②B.①②④C.①②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明:${∫}_{x}^{1}$$\frac{dx}{1+{x}^{2}}$=${∫}_{1}^{\frac{1}{x}}$$\frac{dx}{1+{x}^{2}}$(x>0).

查看答案和解析>>

同步練習(xí)冊(cè)答案