17.函數(shù)$f(x)=\sqrt{x-1}+ln(4-x)$的定義域是( 。
A.(1,+∞)B.[1,4)C.(1,4]D.(4,+∞)

分析 根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,求出解集即可.

解答 解:∵函數(shù)$f(x)=\sqrt{x-1}+ln(4-x)$,
∴$\left\{\begin{array}{l}{x-1≥0}\\{4-x>0}\end{array}\right.$,
解得1≤x<4;
∴函數(shù)f(x)的定義域是[1,4).
故選:B.

點評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知{an}是遞增的等差數(shù)列,a1、a5是關(guān)于x方程x2-6x+5=0的兩個根.
(1)求通項公式an;   
(2)求數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.式子log32log227的值為(  )
A.2B.3C.$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x-1)=x2+(2a-2)x+3-2a
(1)求實數(shù)a的值,使f(x)在區(qū)間[-5,5]上的最小值為-1;
(2)已知函數(shù)g(x)=2x+$\sqrt{x+1}$,對任意使g(x)有意義的實數(shù)x1,總存在實數(shù)x2,使g(x1)=f(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)$f(x)={sin^2}x+\sqrt{3}sinxcosx$.
(1)求函數(shù)f(x)的最小正周期;
(2)在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且$f(A)=\frac{3}{2},a=2$,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意x∈R,不等式f(x)≥4x恒成立.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=logb[f(x)+4]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列幾個命題:
①命題“若α=$\frac{π}{4}$,則tanα=1”的逆否命題為假命題;
②命題p:任意x∈R,都有sinx≤1,則“非p”:存在x0∈R,使得sinx0>1
③命題p:存在x0∈R,使得sinx0+cosx0=$\frac{3}{2}$;命題q:△ABC中,A>B?sinA>sinB,則命題“¬p且q”為真命題
④方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m+3}$=1表示橢圓的充要條件是-3<m<5.
⑤對空間任意一點O和不共線的三點A、B、C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$,則P、A、B、C四點共面.
其中不正確的個數(shù)(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項和為Sn,a2=3,S5=25,正項數(shù)列{bn}滿足${b_1}{b_2}{b_3}…{b_n}={({\sqrt{3}})^{s_n}}$.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若(-1)nλ<2+$\frac{{{{({-1})}^{n+1}}}}{a_n}$對一切正整數(shù)n均成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列有關(guān)命題的說法正確的是(  )
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.若p∧q為假命題,則p、q均為假命題
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

同步練習(xí)冊答案