【題目】如圖,在三梭柱ABCA1B1C1中,ACBC,EF分別為AB,A1B1的中點.

1)求證:AF∥平面B1CE

2)若A1B1,求證:平面B1CE⊥平面ABC.

【答案】1)見證明;(2)見證明

【解析】

1)先通過證,由線線平行經(jīng)過判定定理得到線面平行;

2)由線線垂直經(jīng)過判定定理得到線面垂直平面 ,再由面面垂直的判定定理證明即可.

1)證:在三棱錐ABC-A1B1C1中,ABA1B1 ,AB=A1B1

E,FAB,A1B1的中點

FB1A1B1AEAB,FB1=A1B1,AE=AB

FB1AE,FB1=AE,四邊形FB1EA為平行四邊形

AFEB1

又∵AF平面B1CE,EB1平面B1CE,AF平面B1CE

(2)證:由(1)知,ABA1B1

A1B1B1C

ABB1C

又∵E為等腰ΔABC的中點

ABEC

又∵EC∩B1C=C

ABB1C

AB⊥平面B1CE

又∵AB平面ABC

∴平面ABC⊥平面B1CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為直徑的上運(yùn)動,平面,且,點分別是、的中點.

(1)求證:;

(2)若,求點平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實常數(shù),函數(shù)

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)設(shè),不等式的解集為,不等式的解集為,當(dāng)時,是否存在正整數(shù),使得成立.若存在,試找出所有的m;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四人進(jìn)行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個棋子(如圖所示),甲從中記下某個棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項和為,則_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,34}和集合B={1,23,n},其中n≥5.從集合A中任取三個不同的元素,其中最小的元素用S表示;從集合B中任取三個不同的元素,其中最大的元素用T表示.記XTS.

(1)當(dāng)n5時,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望;

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表中數(shù)表為“森德拉姆篩”,其特點是每行每列都成等差數(shù)列,記第i行,第j列的數(shù)為aij,則數(shù)字41在表中出現(xiàn)的次數(shù)為( 。

 2

 3

 4

 5

 6

 7

 3

 5

 7

 9

 11

 13

 4

 7

 10

 13

 16

 19

 5

 9

 13

 17

 21

 25

 6

 11

 16

 21

 26

 31

 7

 13

 19

 25

 31

 37

A.4B.8C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是遞增數(shù)列,數(shù)列滿足:對任意,存在,使得,則稱的“分隔數(shù)列”.

(1)設(shè),證明:數(shù)列的分隔數(shù)列;

(2)設(shè)的前n項和,,判斷數(shù)列是否是數(shù)列的分隔數(shù)列,并說明理由;

(3)設(shè)的前n項和,若數(shù)列的分隔數(shù)列,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案