【題目】如圖,在三梭柱ABC-A1B1C1中,AC=BC,E,F分別為AB,A1B1的中點.
(1)求證:AF∥平面B1CE;
(2)若A1B1⊥,求證:平面B1CE⊥平面ABC.
【答案】(1)見證明;(2)見證明
【解析】
(1)先通過證,由線線平行經(jīng)過判定定理得到線面平行;
(2)由線線垂直經(jīng)過判定定理得到線面垂直平面 ,再由面面垂直的判定定理證明即可.
(1)證:在三棱錐ABC-A1B1C1中,AB∥A1B1 ,AB=A1B1
∵E,F是AB,A1B1的中點
∴FB1∥A1B1,AE∥AB,FB1=A1B1,AE=AB
∴FB1∥AE,FB1=AE,四邊形FB1EA為平行四邊形
∴AF∥EB1
又∵AF平面B1CE,EB1平面B1CE,∴AF∥平面B1CE
(2)證:由(1)知,AB∥A1B1
∵A1B1⊥B1C
∴AB⊥B1C
又∵E為等腰ΔABC的中點
∴AB⊥EC
又∵EC∩B1C=C
AB⊥B1C
∴AB⊥平面B1CE
又∵AB平面ABC
∴平面ABC⊥平面B1CE
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實常數(shù),函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)設(shè),不等式的解集為,不等式的解集為,當(dāng)時,是否存在正整數(shù),使得或成立.若存在,試找出所有的m;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人進(jìn)行一項益智游戲,方法如下:第一步:先由四人看著平面直角坐標(biāo)系中方格內(nèi)的16個棋子(如圖所示),甲從中記下某個棋子的坐標(biāo);第二步:甲分別告訴其他三人:告訴乙棋子的橫坐標(biāo).告訴丙棋子的縱坐標(biāo),告訴丁棋子的橫坐標(biāo)與縱坐標(biāo)相等;第三步:由乙、丙、丁依次回答.對話如下:“乙先說我無法確定.丙接著說我也無法確定.最后丁說我知道”.則甲記下的棋子的坐標(biāo)為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項和為,則_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,2,3,4}和集合B={1,2,3,…,n},其中n≥5,.從集合A中任取三個不同的元素,其中最小的元素用S表示;從集合B中任取三個不同的元素,其中最大的元素用T表示.記X=T-S.
(1)當(dāng)n=5時,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表中數(shù)表為“森德拉姆篩”,其特點是每行每列都成等差數(shù)列,記第i行,第j列的數(shù)為aij,則數(shù)字41在表中出現(xiàn)的次數(shù)為( 。
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
A.4B.8C.9D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷量(百臺) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;
(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:
有購買意愿對應(yīng)的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 60 | 80 | 120 | 130 | 80 | 30 |
現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.
參考公式與數(shù)據(jù):線性回歸方程,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是遞增數(shù)列,數(shù)列滿足:對任意,存在,使得,則稱是的“分隔數(shù)列”.
(1)設(shè),證明:數(shù)列是的分隔數(shù)列;
(2)設(shè)是的前n項和,,判斷數(shù)列是否是數(shù)列的分隔數(shù)列,并說明理由;
(3)設(shè)是的前n項和,若數(shù)列是的分隔數(shù)列,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com