20.根據(jù)如下樣本數(shù)據(jù)
x34567
y4.0a+b-1-0.50.5-0.2
得到的回歸方程為$\widehat{y}$=bx+a,若樣本中心為(5,0.9),則x每減少1個(gè)單位,y就( 。
A.增加1.4個(gè)單位B.減少1.4個(gè)單位C.增加1.2個(gè)單位D.減少1.2個(gè)單位

分析 由題意,$\frac{a+b-2}{5}$=0.9,所以a+b=6.5,利用樣本中心為(5,0.9),可得0.9=5b+a,求出a,b,可得回歸方程,即可得出結(jié)論.

解答 解:由題意,$\frac{a+b-2}{5}$=0.9,所以a+b=6.5①,
因?yàn)闃颖局行臑椋?,0.9),
所以0.9=5b+a②,
聯(lián)立①②可得b=-1.4,a=7.9,
所以$\widehat{y}$=-1.4x+7.9,
所以x每減少1個(gè)單位,y就增加1.4個(gè)單位,
故選:A.

點(diǎn)評 本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,利用回歸方程恒過樣本中心點(diǎn)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=$\frac{8}{{x}^{2}}$在區(qū)間[1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)a1=1,點(diǎn)P($\sqrt{{S}_{n}}$,Sn+1)(n∈N*)在曲線y=(x+1)2上.
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)設(shè)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,Tn表示數(shù)列{bn}的前n項(xiàng)和,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)(1-2x)3=a3x3+a2x2+a1x+a0,則a0-a1+a2-a3=27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某牛奶廠要將一批牛奶用汽車從所在城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由廠商承擔(dān).若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送牛奶,已知下表內(nèi)的信息:
統(tǒng)計(jì)信息在不堵車的情況下到達(dá)城市乙所需時(shí)間(天)在堵車的情況下到達(dá)城市乙所需時(shí)間(天)堵車的概率運(yùn)費(fèi)(萬元)
公路123$\frac{1}{10}$1.6
公路214$\frac{1}{2}$0.8
(Ⅰ)記汽車選擇公路1運(yùn)送牛奶時(shí)牛奶廠獲得的毛收入為ξ(單位:萬元),求ξ的分布列和數(shù)學(xué)期望E(ξ);
(Ⅱ)如果你是牛奶廠的決策者,你選擇哪條公路運(yùn)送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費(fèi)用-運(yùn)費(fèi))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a2=$\frac{1}{4}$,且S1,S2,S3+$\frac{1}{8}$成等差數(shù)列;公差不為0的等差數(shù)列{bn}的前n項(xiàng)和Tn滿足$\frac{{T}_{n}}{n}$=c•bn+1(其中c為常數(shù)),且b2=24.
(1)求數(shù)列{an}、{bn}的通頂公式;
(2)記數(shù)列{$\frac{1}{{T}_{n}}$}的前n項(xiàng)和為Q,比較Q與$\frac{{S}_{n}}{2}$的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求函數(shù)y=sin22x+$\sqrt{3}$sinxcosx-1的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an},$\overrightarrow{x}$=(an+1,-2),$\overrightarrow{y}$=(1,an),且$\overrightarrow{x}$⊥$\overrightarrow{y}$,a3+2是a2與a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若滿足bn=13+2log${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.不等式組$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥1\\ x≤1\end{array}\right.$表示的平面區(qū)域的面積為1.

查看答案和解析>>

同步練習(xí)冊答案