以雙曲線x2-y2=2的右焦點(diǎn)為圓心,且與其漸近線相切的圓的方程是( 。
A、x2+y2-4x-2=0
B、x2+y2-4x+2=0
C、x2+y2+4x-2=0
D、x2+y2+4x+2=0
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線x2-y2=2的右焦點(diǎn)為(2,0),漸近線方程為x±y=0,可得圓心與半徑,即可得到圓的方程.
解答: 解:雙曲線x2-y2=2的右焦點(diǎn)為(2,0),漸近線方程為x±y=0,則
(2,0)到漸近線的距離為
2
2
=
2
,
∴所求圓的方程是(x-2)2+y2=2,
即x2+y2-4x+2=0.
故選:B.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì),考查圓的方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線2x+y-1=0的傾斜角為α,則sin(2α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)(1+i)i=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-x
x-2
的值域?yàn)?div id="micgwem" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2x與函數(shù)g(x)的圖象關(guān)于y=x對(duì)稱,且有g(shù)(a)g(b)=2,a>0,b>0,則
4
a
+
1
b
的最小值為( 。
A、9
B、
9
4
C、4
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖.若輸入的n的值為3,則輸出的k的值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[x)表示大于x的最小整數(shù),例如[3)=4,[-1.2)=-1.下列命題:
①函數(shù)f(x)=[x)-x的值域是(0,1];
②若{an}是等差數(shù)列,則{[an)}也是等差數(shù)列;
③若{an}是等比數(shù)列,則{[an)}也是等比數(shù)列;
④若x∈(1,4),則方程[x)-x=
1
2
有3個(gè)根.
正確的是( 。
A、②④B、③④C、①③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={1,2,3,4},B={2,4,6},則A∩B的元素個(gè)數(shù)是(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a
x
+lnx,(a∈R).
(Ⅰ)若f(x)有最值,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a≥2時(shí),若存在x1、x2(x1≠x2),使得曲線y=f(x)在x=x1與x=x2處的切線互相平行,求證:x1+x2>8.

查看答案和解析>>

同步練習(xí)冊(cè)答案