【題目】已知函數(shù).

(Ⅰ)求證:當(dāng)時(shí),函數(shù)上存在唯一的零點(diǎn);

(Ⅱ)當(dāng)時(shí),若存在,使得成立,求的取值范圍.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).

【解析】分析:(Ⅰ)f求導(dǎo)得,,所以,則函數(shù)單調(diào)遞增,計(jì)算f,,即可證明結(jié)論.
(Ⅱ)由(Ⅰ),,

當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),時(shí)取最大值,最大值為.,“存在,使得成立”等價(jià)于“時(shí),”,即可得出.

詳解:

(Ⅰ)函數(shù),定義域?yàn)?/span>,,

,所以,則函數(shù)單調(diào)遞增,

,,

函數(shù)上單調(diào)遞增,

所以函數(shù)上存在唯一的零點(diǎn).

(Ⅱ)由(Ⅰ),,,

當(dāng)時(shí),,單調(diào)遞增,

當(dāng)時(shí),,單調(diào)遞減,

時(shí)取最大值,且最大值為.

“存在,使得成立”等價(jià)于“時(shí),”,所以,即,

,,則單調(diào)遞增,且

所以當(dāng)時(shí),,當(dāng)時(shí),,

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·重慶高二檢測(cè))如圖,三棱柱ABC-A1B1C1,側(cè)棱垂直底面ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn).

(1)證明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個(gè)游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來(lái)很神奇,其實(shí)原理是十分簡(jiǎn)單的,要學(xué)會(huì)盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗(yàn)證這個(gè)結(jié)論,某興趣小組隨機(jī)抽取了50名魔方愛(ài)好者進(jìn)行調(diào)查,得到的情況如下表所示:

喜歡盲擰

不喜歡盲擰

總計(jì)

22

30

12

總計(jì)

50

1

并邀請(qǐng)這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:

成功完成時(shí)間(分鐘)

[0,10)

[10,20)

[20,30)

[30,40]

人數(shù)

10

10

5

5

2

(1)將表1補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?

(2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時(shí)間(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替);

(3)現(xiàn)從表2中成功完成時(shí)間在[0,10)內(nèi)的10名男生中任意抽取3人對(duì)他們的盲擰情況進(jìn)行視頻記錄,記成功完成時(shí)間在[0,10)內(nèi)的甲、乙、丙3人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附參考公式及數(shù)據(jù):,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),M為直線x=﹣3上任意一點(diǎn),過(guò)F作MF的垂線交橢圓C于點(diǎn)P,Q.證明:OM經(jīng)過(guò)線段PQ的中點(diǎn)N.(其中O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于,為棱上的點(diǎn),,.

(1)若為棱的中點(diǎn),求證://平面;

(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;

(3)在第(2)問(wèn)條件下,設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球,兩個(gè)“”號(hào)球,三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球,五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,每位顧客消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元,“”號(hào)球獎(jiǎng)元,“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒(méi)有獎(jiǎng)金。

(1)經(jīng)統(tǒng)計(jì),顧客消費(fèi)額服從正態(tài)分布,某天有位顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù).(結(jié)果四舍五入取整數(shù))

附:若,則,.

(2)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列.

(3)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,

方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);

方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì).

請(qǐng)問(wèn):這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】渦陽(yáng)縣某華為手機(jī)專賣店對(duì)市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購(gòu)買華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如圖:

分組(歲)

頻數(shù)

合計(jì)

1)求頻數(shù)分布表中、的值,并補(bǔ)全頻率分布直方圖;

2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線x軸交于不同的兩點(diǎn)AB,曲線Γy軸交于點(diǎn)C

1)是否存在以AB為直徑的圓過(guò)點(diǎn)C?若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由;

2)求證:過(guò)A,B,C三點(diǎn)的圓過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案