若集合A={x∈Z|2<2x+2≤8},B={x∈R|x2-2x>0},則A∩(∁RB)所含的元素個(gè)數(shù)為
 
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:求出A與B中不等式的解集確定出A與B,根據(jù)全集R求出B的補(bǔ)集,找出A與B補(bǔ)集的交集即可.
解答: 解:由A中的不等式變形得:2<2x+2≤8=23,x∈Z,即1<x+2≤3,x∈Z,
解得:-1<x≤1,x∈Z,即A={0,1},
由B中的不等式解得:x<0或x>2,即B=(-∞,0)∪(2,+∞),
∵全集為R,∴∁RB=[0,2],
∴A∩(∁RB)={0,1},
則A∩(∁RB)所含的元素個(gè)數(shù)為2個(gè).
故答案為:2.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集及其運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x2
e-
1
|x|
(其中e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)在(-∞,0)上求函數(shù)f(x)的極值;
(Ⅱ)證明:當(dāng)x>0時(shí),對(duì)任意正整數(shù)n都有f(
1
x
)<n!•x2-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,cosC=-
6
4

(1)若c=
2
a,試比較a與b的大;
(2)當(dāng)b=2,sinB=
10
8
,D為AB的中點(diǎn)時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū) 的PM2.5的年平均濃度不得超過35微克/立方米.某城市環(huán)保部門在2013年1月1日到 2013年4月30日這120天對(duì)某居民區(qū)的PM2.5平均濃度的監(jiān)測(cè)數(shù)據(jù)統(tǒng)計(jì)如下:
組別 PM2.5濃度(微克/立方米) 頻數(shù)(天)
第一組 (0,35] 32
第二組 (35,75] 64
第三組 (75,115] 16
第四組 115以上 8
(Ⅰ)在這120天中抽取30天的數(shù)據(jù)做進(jìn)一步分析,每一組應(yīng)抽取多少天?
(Ⅱ)在(I)中所抽取的樣本PM2.5的平均濃度超過75(微克/立方米)的若干天中,隨 機(jī)抽取2天,求恰好有一天平均濃度超過115(微克/立方米)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2(x≤0)的反函數(shù)是f-1(x),則反函數(shù)的解析式是f-1(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,若
2y
x
+
8x
y
>m2+7m恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx+2013,若f(2014)=4025,則f(-2014)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c分別是直角三角形ABC(C為直角)內(nèi)角A,B,C的對(duì)邊,則直線l:ax+by+c=0被圓M:x2+y2=5所截得線段的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:mx-2y+m+6=0(m∈R),則圓C:(x-1)2+(y-1)2=2上的各點(diǎn)到直線l的距離最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案