精英家教網 > 高中數學 > 題目詳情
(本題滿分12分)
如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(Ⅰ)設上的一點,證明:平面平面;
(Ⅱ)求四棱錐的體積.
(Ⅰ)由于.故. 又平面平面,平面平面,平面,所以平面,又平面,故平面平面
(Ⅱ)

試題分析:(Ⅰ)由于,,
所以


又平面平面,平面平面
平面,
所以平面,
平面
故平面平面
(Ⅱ)解:過,
由于平面平面,
所以平面
因此為四棱錐的高,
是邊長為4的等邊三角形.
因此
在底面四邊形中,,
所以四邊形是梯形,在中,斜邊邊上的高為,
此即為梯形的高,
所以四邊形的面積為

點評:立體幾何問題主要是探求和證明空間幾何體中的平行和垂直關系以及空間角、體積等計算問題.對于平行和垂直問題的證明或探求,其關鍵是把線線、線面、面面之間的關系進行靈活的轉化.在尋找解題思路時,不妨采用分析法,從要求證的結論逐步逆推到已知條件
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

對于兩條不相交的空間直線,必定存在平面,使得 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

為兩條不同的直線,是兩個不同的平面,下列命題正確的是
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知一四棱錐P-ABCD的三視圖如下,E是側棱PC上的動點。

(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)當點E在何位置時,BD⊥AE?證明你的結論;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)如圖,正三棱柱中,D是BC的中點,

(Ⅰ)求證:;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,,, 點,分別在棱上,且,

(Ⅰ)求證:平面PAC
(Ⅱ)當的中點時,求與平面所成的角的正弦值;
(Ⅲ)是否存在點使得二面角為直二面角?并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分為12分)
在四棱錐中,底面,,,,,的中點.

(I)證明:;
(II)證明:平面;
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點。

(1)證明:平面平面;
(2)證明:平面ABE;
(3)設P是BE的中點,求三棱錐的體積。

查看答案和解析>>

同步練習冊答案