已知a是實數(shù),函數(shù)f(x)=ax2+2x-1,如果函數(shù)y=f(x)在區(qū)間[-1,1]上有零點,求a的取值范圍.
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)的零點,即為ax2+2x-1=0的根,當(dāng)a=0時,顯然不成立,因此可化為a=
1-2x
x2
,x∈[-1,1]的值域問題.
解答: 解:由題意得ax2+2x-1=0在區(qū)間[-1,1]上有解,
當(dāng)x=0時,-1=0顯然不成立
當(dāng)x≠0時,原方程可化為a=(
1
x
)2-2•
1
x
=(
1
x
-1)2-1,
1
x
∈(-∞,-1)∪
(1,+∞).
顯然a>-1.
故所求a的范圍是(-1,+∞).
點評:本題考查了函數(shù)零點的概念以及利用函數(shù)思想解決方程根的存在性問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體三視圖如圖所示,其中三角形的三邊長與圓的直徑均為2,則該幾何體體積為(  )
A、
32+8
3
3
π
B、
32+
3
3
π
C、
4+3
3
3
π
D、
4+
3
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論二次函數(shù)y=ax2+bx+c(a>0)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:
sin(-α)-1
cos(-α)+1
1+sec(-α)
1-cos(-α)
=tan(-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-3x2+3x(a>0),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)m滿足0<m<8,則曲線C1
x2
24
-
y2
8-m
=1與曲線C2
x2
24-m
-
y2
8
=1的( 。
A、焦距相等
B、實半軸長相等
C、虛半軸長相等
D、離心率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若a=4,b=5,且面積S=5
3
,求邊c的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一批產(chǎn)品共10件,其中一等品3件,二等品5件,三等品2件,現(xiàn)從中任取3件,求:
(1)恰好有兩件一等品的概率;
(2)至少有2件產(chǎn)品的等級相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,若a=2
3
,b=1,tanC=
2
,則c=
 

查看答案和解析>>

同步練習(xí)冊答案