8.設(shè)隨機(jī)變量ξ~N(μ,σ2),且P(ξ<-2)=P(ξ>2)=0.3,則P(-2<ξ<0)=0.2.

分析 隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),且P(ξ<-1)=P(ξ>1),得到曲線關(guān)于x=0對(duì)稱(chēng),利用P(ξ>2)=0.3,根據(jù)概率的性質(zhì)得到結(jié)果.

解答 解:因?yàn)镻(ξ<-2)=P(ξ>2),所以正態(tài)分布曲線關(guān)于y軸對(duì)稱(chēng),
又因?yàn)镻(ξ>2)=0.3,所以P(-2<ξ<0)=$\frac{1-2×0.3}{2}$=0.2.
故答案為:0.2.

點(diǎn)評(píng) 一個(gè)隨機(jī)變量如果是眾多的、互不相干的、不分主次的偶然因素作用結(jié)果之和,它就服從或近似的服從正態(tài)分布,正態(tài)分布在概率和統(tǒng)計(jì)中具有重要地位.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知A、B、C為△ABC的三個(gè)內(nèi)角,向量$\overrightarrow{m}$=(2-2sinA,sinA+cosA)與$\overrightarrow{n}$=(sinA-cosA,1+sinA)共線,且$\overrightarrow{AB}$•$\overrightarrow{AC}$>0.
(Ⅰ)求角A的大;
(Ⅱ)求函數(shù)y=2sin2$\frac{B}{2}$+cos$\frac{C-B}{2}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)f(x)是偶函數(shù),g(x)是奇函數(shù),且f(x)+g(x)=2x,則函數(shù)f(x)的解析式是f(x)=$\frac{1}{2}({2}^{x}+{2}^{-x})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列各組函數(shù)是同一函數(shù)的是( 。
A.y=$\frac{2|x|}{x}$與y=2B.y=$\frac{{x}^{2}+x}{x+1}$與y=x(x≠-1)
C.y=|x-2|與y=x-2(x≥2)D.y=|x+1|+|x|與y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列說(shuō)法錯(cuò)誤的是( 。
A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變
B.回歸直線$\hat y=\hat bx+\hat a$必過(guò)點(diǎn)$(\overline x,\overline y)$
C.在一個(gè)2×2列聯(lián)表中,由計(jì)算得隨機(jī)變量K2的觀測(cè)值k=13.079,則可以在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為這兩個(gè)變量間有關(guān)系
D.設(shè)有一個(gè)線性回歸方程為$\hat y=3-5\hat x$,則變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,如果a+c=2b,B=30°,△ABC的面積為$\frac{3}{2}$,那么b等于( 。
A.$\frac{{1+\sqrt{3}}}{2}$B.$1+\sqrt{3}$C.$\frac{{2+\sqrt{3}}}{2}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,Sn=$\frac{n+2}{3}$an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若a<b<0,則下列不等式中成立的是( 。
A.a2>b2B.|a|<|b|C.$\frac{1}{a}<\frac{1}$D.a3>b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.一個(gè)簡(jiǎn)單幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,俯視圖是等腰直角三角形,則該幾何體的體積為$\frac{\sqrt{3}}{3}$,表面積為$\sqrt{3}+\sqrt{7}+1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案