【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為 的正方形,E為PC的中點(diǎn),PB=PD.平面PBD⊥平面ABCD.
(1)證明:PA∥平面EDB.
(2)求三棱錐E﹣BCD與三棱錐P﹣ABD的體積比.
【答案】
(1)證明:連A、C交BD于O,連O、E,因?yàn)榈酌媸钦叫,所以,O是AC的中點(diǎn),
又因?yàn)镋是PC的中點(diǎn),所以O(shè)E是△PAC的中位線,所以,OE∥PA,
又因?yàn)镺E平面DEB,PA平面DEB,所以PA∥平面DEB.
(2)因?yàn)镋是PC的中點(diǎn),所以,E到平面ABCD的距離是P到平面ABCD的距離的一半,△BCD與△ABD的面積相等,
所以, .
【解析】分析:(1)連A、C交BD于O,則OE是△PAC的中位線,可得OE∥PA,從而證明PA∥平面DEB.(2)E到平面ABCD的距離是P到平面ABCD的距離的一半,△BCD與△ABD的面積相等,故體積之比等于 .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)平面與平面垂直的性質(zhì)的理解,了解兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:(2 +1)x+( +2)y+2 +2=0( ∈R),有下列四個(gè)結(jié)論:
直線l經(jīng)過(guò)定點(diǎn)(0,-2);
②若直線l在x軸和y軸上的截距相等,則 =1;
當(dāng) ∈[1, 4+3 ]時(shí),直線l的傾斜角q∈[120°,135°];
④當(dāng) ∈(0,+∞)時(shí),直線l與兩坐標(biāo)軸圍成的三角形面積的最小值為 .
其中正確結(jié)論的是(填上你認(rèn)為正確的所有序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:空間兩向量 =(1,﹣1,m)與 =(1,2,m)的夾角不大于 ;命題q:雙曲線 ﹣ =1的離心率e∈(1,2).若¬q與p∧q均為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷(xiāo)售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得下表:
日需求量n | 8 | 9 | 10 | 11 | 12 |
頻數(shù) | 10 | 10 | 15 | 10 | 5 |
①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,記“當(dāng)天的利潤(rùn)在區(qū)間”為事件A,求P(A)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“真人秀”熱潮在我國(guó)愈演愈烈,為了了解學(xué)生是否喜歡某“真人秀”節(jié)目,在某中學(xué)隨機(jī)調(diào)查了110名學(xué)生,得到如下列聯(lián)表:
男 | 女 | 總計(jì) | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“喜歡該節(jié)目與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“喜歡該節(jié)目與性別無(wú)關(guān)”
C. 有以上的把握認(rèn)為“喜歡該節(jié)目與性別有關(guān)”
D. 有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線m∥平面α,則下列命題中正確的是( )
A.α內(nèi)所有直線都與直線m異面
B.α內(nèi)所有直線都與直線m平行
C.α內(nèi)有且只有一條直線與直線m平行
D.α內(nèi)有無(wú)數(shù)條直線與直線m垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)均為2的三棱柱中,側(cè)面底面, .
(1) 求側(cè)棱與平面所成角的正弦值的大;
(2) 求異面直線間的距離;
(3) 已知點(diǎn)滿足,在直線上是否存在點(diǎn),使平面?若存在,請(qǐng)確定點(diǎn)的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運(yùn)動(dòng)”是微信里由騰訊開(kāi)發(fā)的一個(gè)類(lèi)似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào).手機(jī)用戶可以通過(guò)關(guān)注“微信運(yùn)動(dòng)”公眾號(hào)查看自己每天行走的步數(shù),同時(shí)也可以和好友進(jìn)行運(yùn)動(dòng)量的或點(diǎn)贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機(jī)選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定為“積極型”,否則被系統(tǒng)評(píng)定為“懈怠型”.
(1)利用樣本估計(jì)總體的思想,試估計(jì)小明的所有微信好友中每日走路步數(shù)超過(guò)10000步的概率;
(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為“評(píng)定類(lèi)型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的圖象如圖所示,為得到的g(x)=Acosωx的圖象,可以將f(x)的圖象( )
A.向左平移
B.向左平移
C.向右平移
D.向右平移
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com