4.計算.
(1)(1$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(-$\sqrt{5}$)0+($\frac{3}{2}$)-1;
(2)$\frac{{5}^{2}•\root{5}{{5}^{3}}}{\sqrt{5}•\root{5}{{5}^{4}}}$.

分析 利用有理指數(shù)冪的運算法則化簡求解即可.

解答 解:(1)(1$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(-$\sqrt{5}$)0+($\frac{3}{2}$)-1
=$\frac{4}{3}$-1$+\frac{2}{3}$
=1.
(2)$\frac{{5}^{2}•\root{5}{{5}^{3}}}{\sqrt{5}•\root{5}{{5}^{4}}}$
=${5}^{2+\frac{3}{5}-\frac{1}{2}-\frac{4}{5}}$
=${5}^{\frac{13}{10}}$.

點評 本題考查有理指數(shù)冪的運算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)等差數(shù)列{an}、{bn}的前n項和分別為Sn,Tn,若對于任意的正整數(shù)n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,則$\frac{{a}_{9}}{_{5}+_{7}}$+$\frac{{a}_{3}}{_{4}+_{8}}$=( 。
A.$\frac{19}{41}$B.$\frac{9}{7}$C.$\frac{3}{7}$D.$\frac{40}{59}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線y2=2px(p>0)上有兩個動點A,B及一個定點M(x0,y0),F(xiàn)是拋物線的焦點,且|AF|,|MF|,|BF|成等差數(shù)列.求證:線段AB的垂直平分線經(jīng)過定點Q(x0+p,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)三條直線x-2y=1,2x+ky=3,3kx+4y=5交于一點,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,∠C>90°,若函數(shù)f(x)在區(qū)間[0,1]上是增函數(shù),則下列關(guān)系式正確的是( 。
A.f(cosA)>f(cosB)B.f(sinA)>f(sinB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)A={x∈N|$\frac{6}{2-x}$∈N}.用列舉法表示集合A={-4,-1,0,1,3,4,5,8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知z=$\frac{{{(\sqrt{3}+i)}^{2}(4+3i)}^{3}}{{(\sqrt{2}+i)}^{2}}$,求|z|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=sin2x.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)數(shù)列{an}滿足:an≠0,a1=1,a2=2,an-1(an+1-an)=a2n,n≥2.
(1)設(shè)bn=$\frac{{a}_{n+1}}{{a}_{n}}$,求證:{bn}為等差數(shù)列;
(2)設(shè)cn=$\frac{n}{{a}_{n+1}}$,且{cn}的前n項和為Sn,證明:Sn<1.

查看答案和解析>>

同步練習(xí)冊答案