(2012•安徽模擬)已知函數(shù)f(x)的圖象與函數(shù)
h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng),則當(dāng)
x∈[,2]時(shí),f(x)的值域?yàn)椋ā 。?/div>
| | | |
分析:先設(shè)函數(shù)f(x)的圖象上任意一點(diǎn)P(x,y),根據(jù)它關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為Q(-x,2-y),利用題意Q點(diǎn)在函數(shù)
h(x)=x++2的圖象上,求出函數(shù)f(x)的解析式,最后利用其解析式求出f(x)的值域.
解答:解:設(shè)函數(shù)f(x)的圖象上任意一點(diǎn)P(x,y),
它關(guān)于點(diǎn)A(0,1)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為Q(-x,2-y),
根據(jù)題意Q點(diǎn)在函數(shù)
h(x)=x++2的圖象上,
則2-y=-x+
+2,
∴y=x+
,即f(x)=x+
,
x∈[,2].
當(dāng)x=1時(shí),f(x)取得最小值2,當(dāng)x=3時(shí),f(x)取得最大值
,
∴當(dāng)
x∈[,2]時(shí),f(x)的值域
[2,].
故選C.
點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)對(duì)稱(chēng)性的應(yīng)用、函數(shù)的值域等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.