比較大。
sinθ2(1-cosθ1)
sinθ1(1-cosθ2)
 
1.(其中θ1>θ2,θ1、θ2∈(0,
π
2
))
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:左邊減去右邊等于
sin12)
sinθ1(1-co2)
,再利用條件求得這個(gè)值為正數(shù),可得左邊減去右邊大于零,從而得出結(jié)論.
解答: 解:∵
si2(1-cosθ1)
sinθ1(1-co2)
-1=
sinθ2-si2co1-si2+si1co2
sinθ1(1-co2)
 
=
sin12)
sinθ1(1-co2)
,
再根據(jù)θ1>θ2,θ1、θ2∈(0,
π
2
),可得sinθ1 (1-cosθ2)>0,sin(θ12)>0,
sin12)
sinθ1(1-co2)
>0,故
sin12)
sinθ1(1-co2)
>1,
故答案為:>.
點(diǎn)評(píng):本題主要考查比較兩個(gè)式子的大小的方法,兩角和差的正弦公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:cosa(cosa-cosb)+sina(sina-sinb)=2sin2
a-b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前4項(xiàng)和為24,最后4項(xiàng)和為136,所有項(xiàng)和為240,則項(xiàng)數(shù)n為(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任意給定一個(gè)正實(shí)數(shù),設(shè)計(jì)一個(gè)算法求以這個(gè)數(shù)為半徑的圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知F1、F2分別為橢圓左、右焦點(diǎn),等腰直角三角形AF1F2兩腰的中點(diǎn)M、N在橢圓上,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-
π
3
)=
15
17
,α為銳角,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=8,且(2n+1)an+1=(6n+9)an-16n2-32n-12.
(1)求a2,a3,a4
(2)求{an}的通項(xiàng)公式;
(3)求數(shù)列{an}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sinA
1+cosA
=
1
2
,則sinA+cosA的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程2x=2-a有負(fù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案