【題目】某商品在近30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)是:P=
該商品的日銷售量Q(件)與時(shí)間t(天)的函數(shù)關(guān)系是:Q=﹣t+40(0<t≤30,t∈N*),求這種商品的日銷售金額的最大值.
【答案】解:設(shè)日銷售金額為y元,則y=PQ
y=
當(dāng)0<t<25,t∈N+時(shí),
y=﹣t2+20t+800=﹣(t﹣10)2+900,
∴t=10時(shí),ymax=900元.
當(dāng)25≤t≤30,t∈N+時(shí),
y=t2﹣140t+4000=(t﹣70)2﹣900,
∴t=25時(shí),ymax=1125元.
綜上所述,這種商品日銷售額的最大值為1125元
【解析】先設(shè)日銷售金額為y元,根據(jù)y=PQ寫出函數(shù)y的解析式,再分類討論:當(dāng)0<t<25,t∈N+時(shí),和當(dāng)25≤t≤30,t∈N+時(shí),分別求出各段上函數(shù)的最大值,最后綜合得出這種商品日銷售額的最大值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化從開始使用到凈化效率為50%時(shí)對(duì)顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量有如下等級(jí)劃分:
累積凈化量(克) | 12以上 | |||
等級(jí) |
為了了解一批空氣凈化器(共5000臺(tái))的質(zhì)量,隨機(jī)抽取臺(tái)機(jī)器作為樣本進(jìn)行估計(jì),已知這臺(tái)機(jī)器的累積凈化量都分布在區(qū)間中,按照、、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共5000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?
(3)從累積凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③ >0;
④ .
當(dāng)f(x)=lgx時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名跳高運(yùn)動(dòng)員一次試跳2米高度成功的概率分別為0、7、0、6,且每次試跳成功與否相互之間沒有影響,求:
(1)甲試跳三次,第三次才能成功的概率;
(2)甲、乙兩人在第一次試跳中至少有一人成功的概率;
(3)甲、乙各試跳兩次,甲比乙的成功次數(shù)恰好多一次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3:
(1)若函數(shù)在區(qū)間[﹣1,1]上存在零點(diǎn),求實(shí)數(shù)q的取值范圍;
(2)問:是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時(shí),f(x)的值域?yàn)閰^(qū)間D,且D的長度為12﹣t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)在區(qū)間[﹣2,2]上的最大值、最小值分別是M,m,集合A={x|f(x)=x}.
(1)若A={1,2},且f(0)=2,求M和m的值;
(2)若A={1},且a≥1,記g(a)=M+m,求g(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ()
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)時(shí),對(duì)于任意, ,總有成立,其中是自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com