分析 根據(jù)題意求出數(shù)列{an}的前n項(xiàng)和Sn的解析式,利用an=Sn-Sn-1求出an與an-1的關(guān)系,根據(jù)定義即可證明{an}是等差數(shù)列,求出首項(xiàng)與公差,即可得出通項(xiàng)公式.
解答 證明:正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足2$\sqrt{{S}_{n}}$=an+1,
∴4Sn=${{a}_{n}}^{2}$+2an+1,
∴4Sn-1=${{a}_{n-1}}^{2}$+2an-1+1,n≥2;
∴4(Sn-Sn-1)=${{a}_{n}}^{2}$+2an-${{a}_{n-1}}^{2}$-2an-1,n≥2,
即4an=${{a}_{n}}^{2}$+2an-${{a}_{n-1}}^{2}$-2an-1,n≥2;
整理得(an+an-1)(an-an-1-2)=0,
又an>0,∴an-an-1=2;
又a1=S1,
∴4a1=${{a}_{1}}^{2}$+2a1+1,
解得a1=1;
∴數(shù)列{an}是首項(xiàng)為a1=1,公差d=2的等差數(shù)列,
它的通項(xiàng)公式為an=a1+(n-1)d=1+2(n-1)=2n-1.
點(diǎn)評(píng) 本題考查了等差數(shù)列的定義、通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 35 | B. | $\frac{{3}^{5}}{7}$ | C. | $\frac{7}{{3}^{5}}$ | D. | -7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{{3\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
會(huì)俄語(yǔ) | 不會(huì)俄語(yǔ) | 總計(jì) | |
男 | 10 | 6 | 16 |
女 | 6 | 8 | 14 |
總計(jì) | 16 | 14 | 30 |
P(K2≥k0) | 0.40 | 0.25 | 0.10 | 0.010 |
k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com