9.已知集合A是函數(shù)f(x)=$\sqrt{5+a-x}$+$\frac{1}{\sqrt{x-a}}$的定義域,B={x|-$\frac{a}{2}$<x≤6}.
(I)是否存在實(shí)數(shù)a,使∁R(A∪B)=(∁RA)∪(∁RB)?若存在,請(qǐng)求a的取值范圍;若不存在,請(qǐng)說明理由;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

分析 (1)由題意,A=B,A=(a,5+a],B={x|-$\frac{a}{2}$<x≤6},即可得出結(jié)論;
(2)若A∪B=A,則B⊆A,分類討論,可得結(jié)論.

解答 解:(1)由題意,A=B,A=(a,5+a],B={x|-$\frac{a}{2}$<x≤6}
∴$\left\{\begin{array}{l}{a=-\frac{a}{2}}\\{5+a=6}\end{array}\right.$,無解,
∴不存在實(shí)數(shù)a,使∁R(A∪B)=(∁RA)∪(∁RB);
(2)若A∪B=A,則B⊆A,
∴B=∅,-$\frac{a}{2}≥6$,∴a≤-12,
B≠∅,a>-12時(shí)$\left\{\begin{array}{l}{-\frac{a}{2}≥a}\\{5+a≥6}\end{array}\right.$,∴無解,
綜上所述a≤-12.

點(diǎn)評(píng) 本題考查集合的關(guān)系與運(yùn)算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某公司的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù):
x24568
y40605070
已知y對(duì)x呈線性相關(guān)關(guān)系,且回歸方程為$\stackrel{∧}{y}$═6.5x+17.5,工作人員不慎將表格中y的第一個(gè)數(shù)據(jù)遺失,該數(shù)據(jù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$的一條漸近線平行于直線l:y=-2x-10,雙曲線的一個(gè)焦點(diǎn)在直線l上,雙曲線的方程為( 。
A.$\frac{x^2}{20}-\frac{y^2}{5}=1$B.$\frac{x^2}{20}-\frac{y^2}{100}=1$C.$\frac{x^2}{5}-\frac{y^2}{20}=1$D.$\frac{x^2}{25}-\frac{y^2}{100}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)P為直線x-y=0上的一動(dòng)點(diǎn),過P點(diǎn)做圓(x-4)2+y2=2的兩條切線,切點(diǎn)分別為A,B,則∠APB的最大值60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)H(-1,0),動(dòng)點(diǎn)P是y軸上除原點(diǎn)外的一點(diǎn),動(dòng)點(diǎn)M滿足PH⊥PM,且PM與x軸交于點(diǎn)Q,Q是PM的中點(diǎn).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)若點(diǎn)F是曲線E的焦點(diǎn),過F的兩條直線l1,l2關(guān)于x軸對(duì)稱,且分別交曲線E于AC,BD,若四邊形ABCD的面積等于$\frac{1}{2}$.求直線l1,l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個(gè)正棱柱(底面是正三角形、側(cè)棱垂直于底面的棱柱)的三視圖如圖所示,則該三棱柱的表面積等于(  )
A.2$\sqrt{3}$+12B.2$\sqrt{3}$+24C.2$\sqrt{3}$+12D.6$\sqrt{3}$+24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示為棱長(zhǎng)為1的正方體的表面展開圖,在原正方體中,給出下列四個(gè)結(jié)論:
①點(diǎn)M到AB的距離為$\frac{{\sqrt{2}}}{2}$;
②三棱錐C-DNE的體積為$\frac{1}{6}$;
③AB與EF所成的角是$\frac{π}{2}$;
④M到平面ABD的距離為1.
上述結(jié)論中正確的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.為了調(diào)查患慢性氣管炎是否與吸煙有關(guān),調(diào)查了100名50歲以下的人,調(diào)查結(jié)果如下表:
患慢性氣管炎未患慢性氣管炎合計(jì)
吸煙202040
不吸煙55560
合計(jì)2575100
根據(jù)列聯(lián)表數(shù)據(jù),有99.9%的把握(填寫相應(yīng)的百分比)認(rèn)為患慢性氣管炎與吸煙有關(guān).
附:
P(K2≥k)  0.0500.0100.001
k   3.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的導(dǎo)數(shù)
(1)y=(x+1)(x+2)(x+3)
(2)$y=\frac{2sinx}{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案